Thursday, August 11, 2022
HomeNanotechnologyExcessive-yield solar-driven atmospheric water harvesting of steel–organic-framework-derived nanoporous carbon with fast-diffusion water...

Excessive-yield solar-driven atmospheric water harvesting of steel–organic-framework-derived nanoporous carbon with fast-diffusion water channels


  • World Well being Group. Progress on Family Consuming Water, Sanitation and Hygiene 2000-2017: Particular Give attention to Inequalities (World Well being Group, 2019).

  • Hanikel, N., Prévot, M. S. & Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 15, 348–355 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lord, J. et al. World potential for harvesting ingesting water from air utilizing photo voltaic vitality. Nature 598, 611–617 (2021).

    Article 

    Google Scholar
     

  • Hanikel, N. et al. Evolution of water buildings in metal-organic frameworks for improved atmospheric water harvesting. Science 374, 454–459 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by pure daylight. Science 356, 430–434 (2017).


    Google Scholar
     

  • Ejeian, M. & Wang, R. Adsorption-based atmospheric water harvesting. Joule 5, 1678–1703 (2021).

    Article 

    Google Scholar
     

  • Tu, Y., Wang, R., Zhang, Y. & Wang, J. Progress and expectation of atmospheric water harvesting. Joule 2, 1452–1475 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Xu, W. & Yaghi, O. M. Metallic–natural frameworks for water harvesting from air, anyplace, anytime. ACS Cent. Sci. 6, 1348–1354 (2020).

    CAS 
    Article 

    Google Scholar
     

  • LaPotin, A., Kim, H., Rao, S. R. & Wang, E. N. Adsorption-based atmospheric water harvesting: impression of fabric and part properties on system-level efficiency. Acc. Chem. Res. 52, 1588–1597 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Qi, H. et al. An interfacial solar-driven atmospheric water generator based mostly on a liquid sorbent with simultaneous adsorption–desorption. Adv. Mater. 31, 1903378 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wang, X. et al. An interfacial photo voltaic heating assisted liquid sorbent atmospheric water generator. Angew. Chem. Int. Ed. 58, 12054–12058 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, X., Lu, H., Zhao, F. & Yu, G. Atmospheric water harvesting: a evaluation of fabric and structural designs. ACS Mater. Lett. 2, 671–684 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kalmutzki, M. J., Diercks, C. S. & Yaghi, O. M. Metallic–natural frameworks for water harvesting from air. Adv. Mater. 30, 1704304 (2018).

    Article 

    Google Scholar
     

  • Fathieh, F. et al. Sensible water manufacturing from desert air. Sci. Adv. 4, eaat3198 (2018).

    Article 

    Google Scholar
     

  • Hanikel, N. et al. Fast biking and distinctive yield in a metal-organic framework water harvester. ACS Cent. Sci. 5, 1699–1706 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Anderson, R. J. et al. NMR strategies for characterizing the pore buildings and hydrogen storage properties of microporous carbons. J. Am. Chem. Soc. 132, 8618–8626 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Dillon, A. C. & Heben, M. J. Hydrogen storage utilizing carbon adsorbents: previous, current and future. Appl. Phys. A 72, 133–142 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Dang, S., Zhu, Q.-L. & Xu, Q. Nanomaterials derived from steel–natural frameworks. Nat. Rev. Mater. 3, 17075 (2017).

    Article 

    Google Scholar
     

  • Bhadra, B. N., Lee, J. Ok., Cho, C. W. & Jhung, S. H. Remarkably environment friendly adsorbent for the removing of bisphenol A from water: Bio-MOF-1-derived porous carbon. Chem. Eng. J. 343, 225–234 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Hao, G.-P. et al. Uncommon ultra-hydrophilic, porous carbon cuboids for atmospheric-water seize. Angew. Chem. Int. Ed. 54, 1941–1945 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Tune, Y. et al. Nucleation and development strategy of water adsorption in micropores of activated carbon revealed by NMR. J. Phys. Chem. C 121, 8504–8509 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Liu, L. et al. Water adsorption on carbon—a evaluation. Adv. Colloid Interface Sci. 250, 64–78 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Humplik, T., Raj, R., Maroo, S. C., Laoui, T. & Wang, E. N. Impact of hydrophilic defects on water transport in MFI zeolites. Langmuir 30, 6446–6453 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Heinke, L. & Kärger, J. Correlating floor permeability with intracrystalline diffusivity in nanoporous solids. Phys. Rev. Lett. 106, 074501 (2011).

    Article 

    Google Scholar
     

  • Wang, H.-J., Kleinhammes, A., McNicholas, T. P., Liu, J. & Wu, Y. Water adsorption in nanoporous carbon characterised by in situ NMR: measurements of pore measurement and pore measurement distribution. J. Phys. Chem. C 118, 8474–8480 (2014).

    CAS 
    Article 

    Google Scholar
     

  • McNicholas, T. P. et al. H2 storage in microporous carbons from PEEK precursors. J. Phys. Chem. C 114, 13902–13908 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Ganguly, A., Sharma, S., Papakonstantinou, P. & Hamilton, J. Probing the thermal deoxygenation of graphene oxide utilizing high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115, 17009–17019 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Duan, X. et al. Metallic-free carbon supplies for CO2 electrochemical discount. Adv. Mater. 29, 1701784 (2017).

    Article 

    Google Scholar
     

  • Kaneko, Ok. Water seize in carbon cuboids. Nat. Chem. 7, 194–196 (2015).

    Article 

    Google Scholar
     

  • Thommes, M. et al. Physisorption of gases, with particular reference to the analysis of floor space and pore measurement distribution (IUPAC technical report). Pure Appl. Chem. 87, 1051–1069 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Mao, H. et al. Revealing molecular mechanisms in hierarchical nanoporous carbon by way of nuclear magnetic resonance. Matter 3, 2093–2107 (2020).

    Article 

    Google Scholar
     

  • Kloutse, F. A., Zacharia, R., Cossement, D. & Chahine, R. Particular warmth capacities of MOF-5, Cu-BTC, Fe-BTC, MOF-177 and MIL-53 (Al) over huge temperature ranges: measurements and utility of empirical group contribution methodology. Microporous Mesoporous Mater. 217, 1–5 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Mu, B. & Walton, Ok. S. Thermal evaluation and warmth capability examine of steel–natural frameworks. J. Phys. Chem. C 115, 22748–22754 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Qiu, L., Murashov, V. & White, M. A. Zeolite 4A: warmth capability and thermodynamic properties. Stable State Sci. 2, 841–846 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Haechler, I. et al. Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the environment. Sci. Adv. 7, eabf3978 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, J. et al. Water harvesting from the environment in arid areas with manganese dioxide. Environ. Sci. Technol. Lett. 7, 48–53 (2020).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments