Tuesday, July 5, 2022
HomeNanotechnologyIn vivo non-invasive confocal fluorescence imaging past 1,700 nm utilizing superconducting nanowire single-photon...

In vivo non-invasive confocal fluorescence imaging past 1,700 nm utilizing superconducting nanowire single-photon detectors


  • Horton, N. G. et al. In vivo three-photon microscopy of subcortical constructions inside an intact mouse mind. Nat. Photon. 7, 205–209 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Yildirim, M., Sugihara, H., So, P. T. C. & Sur, M. Practical imaging of visible cortical layers and subplate in awake mice with optimized three-photon microscopy. Nat. Commun. 10, 177 (2019).

    Article 

    Google Scholar
     

  • Kobat, D., Horton, N. & Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Decide. 16, 106014 (2011).

    Article 

    Google Scholar
     

  • Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Strategies 2, 932–940 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Svoboda, Ok. & Yasuda, R. Rules of two-photon excitation microscopy and its purposes to neuroscience. Neuron 50, 823–839 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Horton, N. G. & Xu, C. Dispersion compensation in three-photon fluorescence microscopy at 1,700 nm. Biomed. Decide. Exp. 6, 1392–1397 (2015).

    Article 

    Google Scholar
     

  • Wang, T. et al. Three-photon imaging of mouse mind construction and performance by means of the intact cranium. Nat. Strategies 15, 789–792 (2018).

    Article 

    Google Scholar
     

  • Yang, Q. et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent efficiency. J. Am. Chem. Soc. 140, 1715–1724 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Li, Y. et al. Design of AIEgens for near-infrared IIb imaging by means of structural modulation at molecular and morphological ranges. Nat. Commun. 11, 1255 (2020).

    Article 

    Google Scholar
     

  • Welsher, Ok. et al. A path to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773–780 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, M. et al. Vibrant quantum dots emitting at 1,600 nm within the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl Acad. Sci. USA 115, 6590–6595 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Bruns, O. T. et al. Subsequent-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Zhong, Y. et al. In vivo molecular imaging for immunotherapy utilizing ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 37, 1322–1331 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Naczynski, D. J. et al. Uncommon-earth-doped organic composites as in vivo shortwave infrared reporters. Nat. Commun. 4, 2199 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Zhu, S. et al. 3D NIR-II molecular imaging distinguishes focused organs with high-performance NIR-II bioconjugates. Adv. Mater. 30, 1705799 (2018).

    Article 

    Google Scholar
     

  • Wang, F. et al. Mild-sheet microscopy within the near-infrared II window. Nat. Strategies 16, 545–552 (2019).

    Article 

    Google Scholar
     

  • Wang, F. et al. In vivo NIR-II structured-illumination light-sheet microscopy. Proc. Natl Acad. Sci. USA 118, e2023888118 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wan, H. et al. A brilliant natural NIR-II nanofluorophore for three-dimensional imaging into organic tissues. Nat. Commun. 9, 1–9 (2018).

    Article 

    Google Scholar
     

  • Golovynskyi, S. et al. Optical home windows for head tissues in near-infrared and short-wave infrared areas: approaching transcranial mild purposes. J. Biophoton. 11, e201800141 (2018).

    Article 

    Google Scholar
     

  • Hong, G. et al. By means of-skull fluorescence imaging of the mind in a brand new near-infrared window. Nat. Photon. 8, 723–730 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Burrows, P. E. et al. Lymphatic abnormalities are related to RASA1 gene mutations in mouse and man. Proc. Natl Acad. Sci. USA 110, 8621–8626 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Diao, S. et al. Fluorescence imaging in vivo at wavelengths past 1,500 nm. Angew. Chem. Int. Ed. 54, 14758–14762 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Pasko, J., Shin, S. & Cheung, D. Epitaxial HgCdTe/CdTe Photodiodes For The 1 to three pm Spectral Area 0282 TSE (SPIE, 1981).

  • Ren, F., Zhao, H., Vetrone, F. & Ma, D. Microwave-assisted cation change towards synthesis of near-infrared emitting PbS/CdS core/shell quantum dots with considerably improved quantum yields by means of a uniform development path. Nanoscale 5, 7800–7804 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Ma, Z. et al. Cross‐hyperlink‐functionalized nanoparticles for fast excretion in nanotheranostic purposes. Angew. Chem. 132, 20733–20741 (2020).

    Article 

    Google Scholar
     

  • Zichi, J. et al. Optimizing the stoichiometry of ultrathin NbTiN movies for high-performance superconducting nanowire single-photon detectors. Decide. Exp. 27, 26579–26587 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wang, L., Jacques, S. L. & Zheng, L. MCML—Monte Carlo modeling of sunshine transport in multi-layered tissues. Comput. Meth. Prog. Biomed. 47, 131–146 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Herisson, F. et al. Direct vascular channels join cranium bone marrow and the mind floor enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Pereira, E. R. et al. Lymph node metastases can invade native blood vessels, exit the node, and colonize distant organs in mice. Science 359, 1403–1407 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Sewald, X. et al. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to determine an infection. Science 350, 563–567 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Milutinovic, S., Abe, J., Godkin, A., Stein, J. V. & Gallimore, A. The twin function of excessive endothelial venules in most cancers development versus immunity. Developments Most cancers 7, 214–225 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Hoshino, H. et al. Apical membrane expression of distinct sulfated glycans represents a novel marker of cholangiolocellular carcinoma. Lab. Make investments. 96, 1246–1255 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Fonsatti, E. & Maio, M. Highlights on endoglin (CD105): from fundamental findings in direction of scientific purposes in human most cancers. J. Transl. Med. 2, 18 (2004).

    Article 

    Google Scholar
     

  • Gaya, M. et al. Irritation-induced disruption of SCS macrophages impairs B cell responses to secondary an infection. Science 347, 667–672 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Girard, J.-P., Moussion, C. & Förster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762–773 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Gu, M., Gan, X., Kisteman, A. & Xu, M. G. Comparability of penetration depth between two-photon excitation and single-photon excitation in imaging by means of turbid tissue media. Appl. Phys. Lett. 77, 1551–1553 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Hu, C., Muller-Karger, F. E. & Zepp, R. G. Absorbance, absorption coefficient, and obvious quantum yield: a touch upon widespread ambiguity in the usage of these optical ideas. Limnol. Oceanogr. 47, 1261–1267 (2002).

    Article 

    Google Scholar
     

  • Wang, M. et al. Evaluating the efficient attenuation lengths for lengthy wavelength in vivo imaging of the mouse mind. Biomed. Decide. Exp. 9, 3534–3543 (2018).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments