Saturday, August 20, 2022
HomeNanotechnologyLatest achievements in nano-based applied sciences for ocular illness prognosis and therapy,...

Latest achievements in nano-based applied sciences for ocular illness prognosis and therapy, overview and replace | Journal of Nanobiotechnology


  • Nagaraj R, Bijukumar DR, Mathew B, Scott EA, Mathew MT. A overview on latest developments in ophthalmology units: presently in market and underneath scientific trials. J Drug Deliv Sci Technol. 2019;52:334–45.

    Article 

    Google Scholar
     

  • Balantrapu T. Newest international blindness & VI prevalence figures revealed in Lancet. 2018. www.iapb.org/information/latest-global-blindness-vi-prevalence-figures-published-lancet. Accessed 5 Jan 2017.

  • Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, et al. Nanocarriers for ocular drug supply: present standing and translational alternative. RSC Adv. 2020;10(46):27835–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schoenfeld ER, Greene JM, Wu SY, Leske MC. Patterns of adherence to diabetes imaginative and prescient care tips: baseline findings from the Diabetic Retinopathy Consciousness Program. Ophthalmology. 2001;108(3):563–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based methods for therapy of ocular illness. Acta Pharm Sin B. 2017;7(3):281–91.

    PubMed 
    Article 

    Google Scholar
     

  • Amirsaadat S, Jafari-Gharabaghlou D, Alijani S, Mousazadeh H, Dadashpour M, Zarghami N. Metformin and Silibinin co-loaded PLGA-PEG nanoparticles for efficient mixture remedy towards human breast most cancers cells. J Drug Deliv Sci Technol. 2021;61: 102107.

    CAS 
    Article 

    Google Scholar
     

  • Adlravan E, Nejati Ok, Karimi MA, Mousazadeh H, Abbasi A, Dadashpour M. Potential exercise of free and PLGA/PEG nanoencapsulated nasturtium officinale extract in inducing cytotoxicity and apoptosis in human lung carcinoma A549 cells. J Drug Deliv Sci Technol. 2021;61: 102256.

    CAS 
    Article 

    Google Scholar
     

  • Mousazadeh H, Pilehvar-Soltanahmadi Y, Dadashpour M, Zarghami N. Cyclodextrin primarily based pure nanostructured carbohydrate polymers as efficient non-viral siRNA supply techniques for most cancers gene remedy. J Management Launch. 2021;330:1046–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bargahi N, Ghasemali S, Jahandar-Lashaki S, Nazari A. Latest advances for most cancers detection and therapy by microfluidic know-how, overview and replace. Biol Proced On-line. 2022;24(1):1–20.

    Article 

    Google Scholar
     

  • Ghasemali S, Farajnia S, Barzegar A, Rahmati-Yamchi M, Baghban R, Rahbarnia L, et al. New developments in anti-angiogenic remedy of most cancers, overview and replace. Anticancer Brokers Med Chem. 2021;21(1):3–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raghava S, Goel G, Kompella UB. Ophthalmic functions of nanotechnology. In: Tombran-Tink J, Barnstable CJ, editors. Ocular transporters in ophthalmic ailments and drug supply. Humana Press; 2008. p. 415–35. https://doi.org/10.1007/978-1-59745-375-2_22. Print ISBN: 978-1-58829-958-1, On-line ISBN: 978-1-59745-375-2.

  • Amrite AC, Kompella UB. Nanoparticles for ocular drug supply. Nanoparticle know-how for drug supply. CRC Press; 2006. p. 343-84. https://doi.org/10.1201/9780849374555.ch11

  • Kompella UB, Amrite AC, Ravi RP, Durazo SA. Nanomedicines for again of the attention drug supply, gene supply, and imaging. Prog Retin Eye Res. 2013;36:172–98.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ahmadkhani L, Mostafavi E, Ghasemali S, Baghban R, Pazoki-Toroudi H, Davaran S, et al. Growth and characterization of a novel conductive polyaniline-g-polystyrene/Fe3O4 nanocomposite for the therapy of most cancers. Artif Cells Nanomed Biotechnol. 2019;47(1):873–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tang Z, Fan X, Chen Y, Gu P. Ocular nanomedicine. Adv Sci. 2022. https://doi.org/10.1002/advs.202003699.

    Article 

    Google Scholar
     

  • Barani M, Sabir F, Rahdar A, Arshad R, Kyzas GZ. Nanotreatment and nanodiagnosis of prostate most cancers: latest updates. Nanomaterials. 2020;10(9):1696.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barani M, Mukhtar M, Rahdar A, Sargazi G, Thysiadou A, Kyzas GZ. Progress within the utility of nanoparticles and graphene as drug carriers and on the prognosis of mind infections. Molecules. 2021;26(1):186.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barani M, Nematollahi MH, Zaboli M, Mirzaei M, Torkzadeh-Mahani M, Pardakhty A, et al. In silico and in vitro examine of magnetic niosomes for gene supply: the impact of ergosterol and ldl cholesterol. Mater Sci Eng C. 2019;94:234–46.

    CAS 
    Article 

    Google Scholar
     

  • Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, et al. Stimuli-responsive polymeric nanocarriers for drug supply, imaging, and theragnosis. Polymers. 2020;12(6):1397.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Davarpanah F, Yazdi AK, Barani M, Mirzaei M, Torkzadeh-Mahani M. Magnetic supply of antitumor carboplatin by utilizing PEGylated-Niosomes. DARU J Pharm Sci. 2018;26(1):57–64.

    CAS 
    Article 

    Google Scholar
     

  • Ebrahimi AK, Barani M, Sheikhshoaie I. Fabrication of a brand new superparamagnetic metal-organic framework with core-shell nanocomposite constructions: characterization, biocompatibility, and drug launch examine. Mater Sci Eng C. 2018;92:349–55.

    CAS 
    Article 

    Google Scholar
     

  • Ghazy E, Rahdar A, Barani M, Kyzas GZ. Nanomaterials for Parkinson illness: latest progress. J Mol Struct 2021;1231:129698. https://doi.org/10.1016/j.molstruc.2020.129698.

    CAS 
    Article 

    Google Scholar
     

  • Hajizadeh MR, Maleki H, Barani M, Fahmidehkar MA, Mahmoodi M, Torkzadeh-Mahani M. In vitro cytotoxicity assay of D-limonene niosomes: an environment friendly nano-carrier for enhancing solubility of plant-extracted brokers. Res Pharm Sci. 2019;14(5):448.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zahin N, Anwar R, Tewari D, Kabir M, Sajid A, Mathew B, et al. Nanoparticles and its biomedical functions in well being and ailments: particular concentrate on drug supply. Environ Sci Pollut Res. 2020;27(16):19151–68.

    CAS 
    Article 

    Google Scholar
     

  • Si X-Y, Merlin D, Xiao B. Latest advances in orally administered cell-specific nanotherapeutics for inflammatory bowel illness. World J Gastroenterol. 2016;22(34):7718.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bonilla L, Espina M, Severino P, Cano A, Ettcheto M, Camins A, et al. Lipid nanoparticles for the posterior eye section. Pharmaceutics. 2021;14(1):90.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F, et al. Polymeric nanoparticles for drug supply: Latest developments and future prospects. Nanomaterials. 2020;10(7):1403.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol. 2011;21(6 suppl):3–9.

    Article 

    Google Scholar
     

  • Chong DY, Johnson MW, Huynh TH, Corridor EF, Comer GM, Fish DN. Vitreous penetration of orally administered famciclovir. Am J Ophthalmol. 2009;148(1):38-42.e1.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Srinivas A, Azad RV, Sharma YR, Kumar A, Satpathy G, Velpandian T. Analysis of vitreous ranges of gatifloxacin after systemic administration in infected and non-inflamed eyes. Acta Ophthalmol. 2009;87(6):648–52.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kim H, Robinson MR, Lizak MJ, Tansey G, Lutz RJ, Yuan P, et al. Managed drug launch from an ocular implant: an analysis utilizing dynamic three-dimensional magnetic resonance imaging. Make investments Ophthalmol Vis Sci. 2004;45(8):2722–31.

    PubMed 
    Article 

    Google Scholar
     

  • Janoria KG, Gunda S, Boddu SH, Mitra AK. Novel approaches to retinal drug supply. Professional Opin Drug Deliv. 2007;4(4):371–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shah SS, Denham LV, Elison JR, Bhattacharjee PS, Clement C, Huq T, et al. Drug supply to the posterior section of the attention for pharmacologic remedy. Professional Rev Ophthalmol. 2010;5(1):75–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal house. Exp Eye Res. 1985;40(5):687–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • SomsanguanAusayakhun M, Yuvaves P. Therapy of cytomegalovirus retinitis in AIDS sufferers with intravitreal ganciclovir. J Med Assoc Thai. 2005;88(9):S15-20.


    Google Scholar
     

  • Ranta V-P, Urtti A. Transscleral drug supply to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58(11):1164–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ambati J, Adamis AP. Transscleral drug supply to the retina and choroid. Prog Retin Eye Res. 2002;21(2):145–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Geroski DH, Edelhauser HF. Transscleral drug supply for posterior section illness. Adv Drug Deliv Rev. 2001;52(1):37–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug supply. Professional Opin Drug Deliv. 2004;1(1):99–114.

    PubMed 
    Article 

    Google Scholar
     

  • Kim SH, Lutz RJ, Wang NS, Robinson MR. Transport limitations in transscleral drug supply for retinal ailments. Ophthalmic Res. 2007;39(5):244–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ranta V-P, Mannermaa E, Lummepuro Ok, Subrizi A, Laukkanen A, Antopolsky M, et al. Barrier evaluation of periocular drug supply to the posterior section. J Management Launch. 2010;148(1):42–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thrimawithana TR, Younger S, Bunt CR, Inexperienced C, Alany RG. Drug supply to the posterior section of the attention. Drug Discov At this time. 2011;16(5–6):270–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug supply. AAPS J. 2010;12(3):348–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patel SR, Lin AS, Edelhauser HF, Prausnitz MR. Suprachoroidal drug supply to the again of the attention utilizing hole microneedles. Pharm Res. 2011;28(1):166–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Einmahl S, Savoldelli M, Dhermies FO, Tabatabay C, Gurny R, Behar-Cohen F. Analysis of a novel biomaterial within the suprachoroidal house of the rabbit eye. Make investments Ophthalmol Vis Sci. 2002;43(5):1533–9.

    PubMed 

    Google Scholar
     

  • Olsen TW, Feng X, Wabner Ok, Conston SR, Sierra DH, Folden DV, et al. Cannulation of the suprachoroidal house: a novel drug supply methodology to the posterior section. Am J Ophthalmol. 2006;142(5):777-87.e2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu S, Liu W, Ma Y, Liu Ok, Wang M. Suprachoroidal injection of ketorolac tromethamine doesn’t trigger retinal injury. Neural Regen Res. 2012;7(35):2770.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghate D, Brooks W, McCarey BE, Edelhauser HF. Pharmacokinetics of intraocular drug supply by periocular injections utilizing ocular fluorophotometry. Ophthalmol Vis Sci. 2007;48(5):2230–7.

    Article 

    Google Scholar
     

  • Singh SR, Dogra M, Singh R, Dogra MR. Unintended globe perforation throughout posterior sub-tenon’s injection of triamcinolone acetonide. Ophthalmic Surg Lasers Imaging Retina. 2019;50(7):466–7.

    PubMed 
    Article 

    Google Scholar
     

  • Thorne JE, Sugar EA, Holbrook JT, Burke AE, Altaweel MM, Vitale AT, et al. Periocular triamcinolone vs. intravitreal triamcinolone vs. intravitreal dexamethasone implant for the therapy of uveitic macular edema: the PeriOcular vs. INTravitreal corticosteroids for uveitic macular edema (POINT) trial. Ophthalmology. 2019;126(2):283–95.

    PubMed 
    Article 

    Google Scholar
     

  • Sen HN, Vitale S, Gangaputra SS, Nussenblatt RB, Liesegang TL, Levy-Clarke GA, et al. Periocular corticosteroid injections in uveitis: results and issues. Ophthalmology. 2014;121(11):2275–86.

    PubMed 
    Article 

    Google Scholar
     

  • Lafranco Dafflon M, Tran VT, Guex-Crosier Y, Herbort CP. Posterior sub-Tenon’s steroid injections for the therapy of posterior ocular irritation: indications, efficacy and unintended effects. Graefes Arch Clin Exp Ophthalmol. 1999;237(4):289–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ghazy E, Kumar A, Barani M, Kaur I, Rahdar A, Behl T. Scrutinizing the therapeutic and diagnostic potential of nanotechnology in thyroid most cancers: edifying drug concentrating on by nano-oncotherapeutics. J Drug Deliv Sci Technol. 2021;61: 102221.

    CAS 
    Article 

    Google Scholar
     

  • Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N. Liposomes and nanotechnology in drug growth: concentrate on ocular targets. Int J Nanomedicine. 2013;8:495.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in scientific use: an up to date overview. Pharmaceutics. 2017;9(2):12.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cai W, Chen Q, Shen T, Yang Q, Hu W, Zhao P, et al. Intravenous anti-VEGF brokers with RGD peptide-targeted core cross-linked star (CCS) polymers modified with indocyanine inexperienced for imaging and therapy of laser-induced choroidal neovascularization. Biomater Sci. 2020;8(16):4481–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nguyen VP, Qian W, Li Y, Liu B, Aaberg M, Henry J, et al. Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nat Commun. 2021;12(1):1–14.

    Article 
    CAS 

    Google Scholar
     

  • Golabchi Ok, Soleimani-Jelodar R, Aghadoost N, Momeni F, Moridikia A, Nahand JS, et al. MicroRNAs in retinoblastoma: potential diagnostic and therapeutic biomarkers. J Cell Physiol. 2018;233(4):3016–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen X-J, Zhang X-Q, Liu Q, Zhang J, Zhou G. Nanotechnology: a promising technique for oral most cancers detection and prognosis. J Nanobiotechnology. 2018;16(1):1–17.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mukhtar M, Bilal M, Rahdar A, Barani M, Arshad R, Behl T, et al. Nanomaterials for prognosis and therapy of mind most cancers: Latest updates. Chemosensors. 2020;8(4):117.

    CAS 
    Article 

    Google Scholar
     

  • Nikazar S, Barani M, Rahdar A, Zoghi M, Kyzas GZ. Photograph-and magnetothermally responsive nanomaterials for remedy, managed drug supply and imaging functions. ChemistrySelect. 2020;5(40):12590–609.

    CAS 
    Article 

    Google Scholar
     

  • Rahdar A, Taboada P, Hajinezhad MR, Barani M, Beyzaei H. Impact of tocopherol on the properties of Pluronic F127 microemulsions: physico-chemical characterization and in vivo toxicity. J Mol Liq. 2019;277:624–30.

    CAS 
    Article 

    Google Scholar
     

  • Sabir F, Barani M, Rahdar A, Bilal M, Nadeem M. The way to face pores and skin most cancers with nanomaterials: a overview. Biointerface Res Appl Chem. 2021;11:11931–55.

    CAS 

    Google Scholar
     

  • Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in most cancers prognosis: progress, challenges and alternatives. J Hematol Oncol. 2019;12(1):1–13.

    Article 
    CAS 

    Google Scholar
     

  • Moradi S, Mokhtari-Dizaji M, Ghassemi F, Sheibani S, Asadi AF. Growing the effectivity of the retinoblastoma brachytherapy protocol with ultrasonic hyperthermia and gold nanoparticles: a rabbit mannequin. Int J Radiat Biol. 2020;96(12):1614–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nguyen VP, Li Y, Qian W, Liu B, Tian C, Zhang W, et al. Distinction agent enhanced multimodal photoacoustic microscopy and optical coherence tomography for imaging of rabbit choroidal and retinal vessels in vivo. Sci Rep. 2019;9(1):1–17.

    Article 
    CAS 

    Google Scholar
     

  • Lapierre-Landry M, Gordon AY, Penn JS, Skala MC. In vivo photothermal optical coherence tomography of endogenous and exogenous distinction brokers within the eye. Sci Rep. 2017;7(1):1–9.

    CAS 
    Article 

    Google Scholar
     

  • Tzameret A, Ketter-Katz H, Edelshtain V, Sher I, Corem-Salkmon E, Levy I, et al. In vivo MRI evaluation of bioactive magnetic iron oxide/human serum albumin nanoparticle supply into the posterior section of the attention in a rat mannequin of retinal degeneration. J Nanobiotechnology. 2019;17(1):1–11.

    Article 

    Google Scholar
     

  • Jaidev L, Chellappan DR, Bhavsar DV, Ranganathan R, Sivanantham B, Subramanian A, et al. Multi-functional nanoparticles as theranostic brokers for the therapy & imaging of pancreatic most cancers. Acta Biomater. 2017;49:422–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arshad R, Barani M, Rahdar A, Sargazi S, Cucchiarini M, Pandey S, et al. Multi-functionalized nanomaterials and nanoparticles for prognosis and therapy of retinoblastoma. Biosensors. 2021;11(4):97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Salmani Javan E, Lotfi F, Jafari-Gharabaghlou D, Mousazadeh H, Dadashpour M, Zarghami N. Growth of a magnetic nanostructure for co-delivery of metformin and silibinin on development of lung most cancers cells: Doable motion by way of leptin gene and its receptor regulation. Asian Pac J Most cancers Prev. 2022;23(2):519–27.

    PubMed 
    Article 

    Google Scholar
     

  • Ito A, Shinkai M, Honda H, Kobayashi T. Medical utility of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100(1):1–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reyes-Ortega F, Delgado ÁV, Iglesias GR. Modulation of the magnetic hyperthermia response utilizing totally different superparamagnetic iron oxide nanoparticle morphologies. Nanomaterials. 2021;11(3):627.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tan M, Reyes-Ortega F, Schneider-Futschik EK. Successes and challenges: inhaled therapy approaches utilizing magnetic nanoparticles in cystic fibrosis. Magnetochemistry. 2020;6(2):25.

    CAS 
    Article 

    Google Scholar
     

  • Avasthi A, Caro C, Pozo‑Torres E, Leal MP, García‑Martín ML. Magnetic nanoparticles as MRI distinction brokers. In: Floor-modified Nanobiomaterials for Electrochemical and Biomedicine Functions 2020, 49–91. https://doi.org/10.1007/978-3-030-55502-3_3

  • Shabatina TI, Vernaya OI, Shabatin VP, Melnikov MY. Magnetic nanoparticles for biomedical functions: trendy tendencies and prospects. Magnetochemistry. 2020;6(3):30.

    CAS 
    Article 

    Google Scholar
     

  • Nejati Ok, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A. Biomedical functions of functionalized gold nanoparticles: a overview. J Clust Sci. 2021. https://doi.org/10.1007/s10876-020-01955-9.

    Article 

    Google Scholar
     

  • Malhotra N, Lee J-S, Liman RAD, Ruallo JMS, Villaflores OB, Ger T-R, et al. Potential toxicity of iron oxide magnetic nanoparticles: A overview. Molecules. 2020;25(14):3159.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug supply. Nano At this time. 2007;2(3):22–32.

    Article 

    Google Scholar
     

  • Xie J, Chen Ok, Huang J, Lee S, Wang J, Gao J, et al. PET/NIRF/MRI triple useful iron oxide nanoparticles. Biomaterials. 2010;31(11):3016–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baghban R, Afarid M, Soleymani J, Rahimi M. Had been magnetic supplies helpful in most cancers remedy? Biomed Pharmacother. 2021;144: 112321.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pankhurst QA, Connolly J, Jones SK, Dobson J. Functions of magnetic nanoparticles in biomedicine. J Phys D. 2003;36(13):R167.

    CAS 
    Article 

    Google Scholar
     

  • Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L, Daniels D, et al. Iron-oxide labeling and final result of transplanted mesenchymal stem cells within the infarcted myocardium. Circulation. 2007. https://doi.org/10.1161/CIRCULATIONAHA.106.680231.

    Article 
    PubMed 

    Google Scholar
     

  • Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, et al. Centered magnetic stem cell concentrating on to the retina utilizing superparamagnetic iron oxide nanoparticles. Cell Transplant. 2012;21(6):1137–48.

    PubMed 
    Article 

    Google Scholar
     

  • Giannaccini M, Pedicini L, Di Leo N, Giannini M, Calatayud M, Goya G, et al. Nanoparticles as drug provider for the posterior chamber of the attention. In: BioNanoMed 2015 – Summary e-book; 2015.

  • Bae S, Jeoung JW, Jeun M, Jang J-T, Park JH, Kim YJ, et al. Magnetically softened iron oxide (MSIO) nanofluid and its utility to thermally-induced warmth shock proteins for ocular neuroprotection. Biomaterials. 2016;101:165–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zargarzadeh M, MadaahHosseini HR, Delavari H, Irajirad R, Aghaie E. Synthesis of magnetite (Fe3O4)—avastin nanocomposite as a possible drug for AMD therapy. Micro Nano Lett. 2018;13(8):1141–5.

    CAS 
    Article 

    Google Scholar
     

  • Yan J, Peng X, Cai Y, Cong W. Growth of facile drug supply platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration remedy. J Photochem Photobiol B Biol. 2018;183:133–6.

    CAS 
    Article 

    Google Scholar
     

  • Demirci H, Slimani N, Pawar M, Kumon RE, Vaishnava P, Besirli CG. Magnetic hyperthermia in Y79 retinoblastoma and ARPE-19 retinal epithelial cells: tumor selective apoptotic exercise of iron oxide nanoparticle. Transl Vis Sci Technol. 2019;8(5):18.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bassetto M, Ajoy D, Poulhes F, Obringer C, Walter A, Messadeq N, et al. Magnetically assisted drug supply of topical eye drops maintains retinal perform in vivo in mice. Pharmaceutics. 2021;13(10):1650.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: alternatives and challenges in nanomedicine. Professional Opin Drug Deliv. 2010;7(6):753–63.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maleki MJ, Ghasemi Y, Pourhassan-Moghaddam M, Asadi N, Dadashpour M, Abolghasem Mohammadi S, et al. Impact of inexperienced GO/Au nanocomposite on in-vitro amplification of human DNA. IET Nanobiotechnol. 2019;13(9):887–90.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cho W-Ok, Kang S, Choi H, Rho CR. Topically administered gold nanoparticles inhibit experimental corneal neovascularization in mice. Cornea. 2015;34(4):456–9.

    PubMed 
    Article 

    Google Scholar
     

  • Salem HF, Ahmed SM, Omar MM. Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular supply. Drug Des Dev Ther. 2016;10:277.

    CAS 
    Article 

    Google Scholar
     

  • Hoshikawa A, Tagami T, Morimura C, Fukushige Ok, Ozeki T. Ranibizumab biosimilar/polyethyleneglycol-conjugated gold nanoparticles as a novel drug supply platform for age-related macular degeneration. J Drug Deliv Sci Technol. 2017;38:45–50.

    CAS 
    Article 

    Google Scholar
     

  • Maulvi FA, Patil RJ, Desai AR, Shukla MR, Vaidya RJ, Ranch KM, et al. Impact of gold nanoparticles on timolol uptake and its launch kinetics from contact lenses: in vitro and in vivo analysis. Acta Biomater. 2019;86:350–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dong Y, Wan G, Yan P, Qian C, Li F, Peng G. Fabrication of resveratrol coated gold nanoparticles and investigation of their impact on diabetic retinopathy in streptozotocin induced diabetic rats. J Photochem Photobiol. 2019;195:51–7.

    CAS 
    Article 

    Google Scholar
     

  • Trigueros S, Domènech BE, Toulis V, Marfany G. In vitro gene supply in retinal pigment epithelium cells by plasmid DNA-wrapped gold nanoparticles. Genes. 2019;10(4):289.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ayata N, Sezer AD, Bucak S, Turanlı ET. Preparation and in vitro characterization of monoclonal antibody ranibizumab conjugated magnetic nanoparticles for ocular drug supply. Brazilian J Pharm Sci. 2020. https://doi.org/10.1590/s2175-97902020000118171.

    Article 

    Google Scholar
     

  • Dave V, Sharma R, Gupta C, Sur S. Folic acid modified gold nanoparticle for focused supply of Sorafenib tosylate in the direction of the therapy of diabetic retinopathy. Colloids Surf B. 2020;194: 111151.

    CAS 
    Article 

    Google Scholar
     

  • Apaolaza P, Busch M, Asin-Prieto E, Peynshaert Ok, Rathod R, Remaut Ok, et al. Hyaluronic acid coating of gold nanoparticles for intraocular drug supply: analysis of the floor properties and impact on their distribution. Exp Eye Res. 2020;198: 108151.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sonntag T, Froemel F, Stamer WD, Ohlmann A, Fuchshofer R, Breunig M. Distribution of gold nanoparticles within the anterior chamber of the attention after intracameral injection for glaucoma remedy. Pharmaceutics. 2021;13(6):901.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Serati-Nouri H, Rasoulpoor S, Pourpirali R, Sadeghi-Soureh S, Esmaeilizadeh N, Dadashpour M, et al. In vitro growth of human adipose-derived stem cells with delayed senescence by way of twin stage launch of curcumin from mesoporous silica nanoparticles/electrospun nanofibers. Life Sci. 2021;285: 119947.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rosenholm MJ, Sahlgren C, Lindén M. Multifunctional mesoporous silica nanoparticles for mixed therapeutic, diagnostic and focused motion in most cancers therapy. Curr Drug Targets. 2011;12(8):1166–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wachter E, Dees C, Harkins J, Scott T, Petersen M, Rush RE, et al. Topical rose Bengal: Pre-clinical analysis of pharmacokinetics and security. Lasers Surg Med. 2003;32(2):101–10.

    PubMed 
    Article 

    Google Scholar
     

  • Uppal A, Jain B, Gupta PK, Das Ok. Photodynamic motion of Rose Bengal silica nanoparticle complicated on breast and oral most cancers cell strains. Photochem Photobiol. 2011;87(5):1146–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park J-H, Jeong H, Hong J, Chang M, Kim M, Chuck RS, et al. The impact of silica nanoparticles on human corneal epithelial cells. Sci Rep. 2016;6(1):1–11.

    Article 
    CAS 

    Google Scholar
     

  • Liao Y-T, Lee C-H, Chen S-T, Lai J-Y, Wu KCW. Gelatin-functionalized mesoporous silica nanoparticles with sustained launch properties for intracameral pharmacotherapy of glaucoma. J Mater Chem B. 2017;5(34):7008–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim S-N, Ko SA, Park CG, Lee SH, Huh BK, Park YH, et al. Amino-functionalized mesoporous silica particles for ocular supply of brimonidine. Mol Pharm. 2018;15(8):3143–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin YX, Hu XF, Zhao Y, Gao YJ, Yang C, Qiao SL, et al. Photothermal ring built-in intraocular lens for high-efficient eye illness therapy. Adv Mater. 2017;29(34):1701617.

    Article 
    CAS 

    Google Scholar
     

  • Yang J, Gong X, Fang L, Fan Q, Cai L, Qiu X, et al. Potential of CeCl3@ mSiO2 nanoparticles in assuaging diabetic cataract growth and development. Nanomed Nanotechnol Biol Med. 2017;13(3):1147–55.

    CAS 
    Article 

    Google Scholar
     

  • Hu C, Solar J, Zhang Y, Chen J, Lei Y, Solar X, et al. Native supply and sustained-release of nitric oxide donor loaded in mesoporous silica particles for environment friendly therapy of major open-angle glaucoma. Adv Healthc Mater. 2018;7(23):1801047.

    Article 
    CAS 

    Google Scholar
     

  • Nagai N, Yamaoka S, Fukuoka Y, Ishii M, Otake H, Kanai Ok, et al. Enhancement in corneal permeability of dissolved carteolol by its mixture with magnesium hydroxide nanoparticles. Int J Mol Sci. 2018;19(1):282.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Nagai N, Ogata F, Otake H, Kawasaki N, Nakazawa Y, Kanai Ok, et al. Co-instillation of nano-solid magnesium hydroxide enhances corneal permeability of dissolved timolol. Exp Eye Res. 2017;165:118–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peterson GI, Dobrynin AV, Becker ML. Biodegradable form reminiscence polymers in drugs. Adv Healthc Mater. 2017;6(21):1700694.

    Article 
    CAS 

    Google Scholar
     

  • Di Colo G, Zambito Y, Zaino C, Sansò M. Chosen polysaccharides at comparability for his or her mucoadhesiveness and impact on precorneal residence of various medicine within the rabbit mannequin. Drug Dev Ind Pharm. 2009;35(8):941–9.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lynch C, Kondiah PP, Choonara YE, du Toit LC, Ally N, Pillay V. Advances in biodegradable nano-sized polymer-based ocular drug supply. Polymers. 2019;11(8):1371.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Andrés-Guerrero V, Zong M, Ramsay E, Rojas B, Sarkhel S, Gallego B, et al. Novel biodegradable polyesteramide microspheres for managed drug supply in Ophthalmology. J Management Launch. 2015;211:105–17.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Aramwit P, Ekasit S, Yamdech R. The event of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the managed launch of silk sericin. Biomed Microdevices. 2015;17(5):1–9.

    CAS 
    Article 

    Google Scholar
     

  • Mayol L, Biondi M, Russo L, Malle BM, Schwach-Abdellaoui Ok, Borzacchiello A. Amphiphilic hyaluronic acid derivatives towards the design of micelles for the sustained supply of hydrophobic medicine. Carbohydr Polym. 2014;102:110–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahmed EM. Hydrogel: preparation, characterization, and functions: a overview. J Adv Res. 2015;6(2):105–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kirchhof S, Goepferich AM, Brandl FP. Hydrogels in ophthalmic functions. Eur J Pharm Biopharm. 2015;95:227–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hernández R, Sacristán J, Asín L, Torres T, Ibarra M, Goya G, et al. Magnetic hydrogels derived from polysaccharides with improved particular energy absorption: potential units for remotely triggered drug supply. J Phys Chem B. 2010;114(37):12002–7.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Balachandra A, Chan EC, Paul JP, Ng S, Chrysostomou V, Ngo S, et al. A biocompatible reverse thermoresponsive polymer for ocular drug supply. Drug Deliv. 2019;26(1):343–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pandey V, Gajbhiye KR, Soni V. Lactoferrin-appended stable lipid nanoparticles of paclitaxel for efficient administration of bronchogenic carcinoma. Drug Deliv. 2015;22(2):199–205.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rai A, Jain A, Jain A, Jain A, Pandey V, Chashoo G, et al. Focused SLNs for administration of HIV-1 related dementia. Drug Dev Ind Pharm. 2015;41(8):1321–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tekade RK, Maheshwari R, Tekade M, Chougule MB. Stable lipid nanoparticles for concentrating on and supply of medication and genes. In: Nanotechnology-Primarily based Approaches for Focusing on and Supply of Medication and Genes: Elsevier; 2017. p. 256-86. https://doi.org/10.1016/B978-0-12-809717-5.00010-5

  • Balguri SP, Adelli GR, Majumdar S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for supply to the posterior section ocular tissues. Eur J Pharm Biopharm. 2016;109:224–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amoabediny G, Haghiralsadat F, Naderinezhad S, Helder MN, Akhoundi Kharanaghi E, Mohammadnejad Arough J, et al. Overview of preparation strategies of polymeric and lipid-based (niosome, stable lipid, liposome) nanoparticles: a complete overview. Int J Polym Mater. 2018;67(6):383–400.

    CAS 
    Article 

    Google Scholar
     

  • Mo Z, Ban J, Zhang Y, Du Y, Wen Y, Huang X, et al. Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained supply of dexamethasone. Nanomedicine. 2018;13(11):1239–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bhattacharjee A, Das PJ, Adhikari P, Marbaniang D, Pal P, Ray S, et al. Novel drug supply techniques for ocular remedy: with particular reference to liposomal ocular supply. Eur J Ophthalmol. 2019;29(1):113–26.

    PubMed 
    Article 

    Google Scholar
     

  • Shi S, Peng F, Zheng Q, Zeng L, Chen H, Li X, et al. Micelle-solubilized axitinib for ocular administration in anti-neovascularization. Int J Pharm. 2019;560:19–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yadav M, Schiavone N, Guzman-Aranguez A, Giansanti F, Papucci L, de Lara MJP, et al. Atorvastatin-loaded stable lipid nanoparticles as eye drops: proposed therapy choice for age-related macular degeneration (AMD). Drug Deliv Transl Res. 2020;10(4):919–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Music Ok, Yan M, Li M, Geng Y, Wu X. Preparation and in vitro–in vivo analysis of novel ocular nanomicelle formulation of thymol primarily based on glycyrrhizin. Colloids Surf B. 2020;194: 111157.

    CAS 
    Article 

    Google Scholar
     

  • Baig MS, Owida H, Njoroge W, Yang Y. Growth and analysis of cationic nanostructured lipid carriers for ophthalmic drug supply of besifloxacin. J Drug Deliv Sci Technol. 2020;55: 101496.

    CAS 
    Article 

    Google Scholar
     

  • Sood A, Gupta A, Agrawal G. Latest advances in polysaccharides primarily based biomaterials for drug supply and tissue engineering functions. Carbohydr Polym technol Appl. 2021;2: 100067.

    CAS 

    Google Scholar
     

  • Pathak Ok. Marine bioadhesives: alternatives and challenges. Ther Deliv. 2019;10(12):749–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Servais AB, Kienzle A, Valenzuela CD, Ysasi AB, Wagner WL, Tsuda A, et al. Structural heteropolysaccharide adhesion to the glycocalyx of visceral mesothelium. Tissue Eng Half A. 2018;24(3–4):199–206.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • George B, Suchithra T. Plant-derived bioadhesives for wound dressing and drug supply system. Fitoterapia. 2019;137: 104241.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Irimia T, Ghica MV, Popa L, Anuţa V, Arsene A-L, Dinu-Pîrvu C-E. Methods for bettering ocular drug bioavailability and corneal wound therapeutic with chitosan-based supply techniques. Polymers. 2018;10(11):1221.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Nishikawa S, Tamai M. Ultrastructure of hyaluronic acid and collagen within the human vitreous. Curr Eye Res. 1996;15(1):37–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakagawa M, Tanaka M, Miyata T. Analysis of collagen gel and hyaluronic acid as vitreous substitutes. Ophthalmic Res. 1997;29(6):409–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fulgêncio GDO, Viana FAB, Ribeiro RR, Yoshida MI, Faraco AG, Cunha-Júnior ADS. New mucoadhesive chitosan movie for ophthalmic drug supply of timolol maleate: in vivo analysis. J Ocul Pharmacol Ther. 2012;28(4):350–8.

    Article 
    CAS 

    Google Scholar
     

  • Lodhi BA, Hussain MA, Ashraf MU, Farid-Ul-Haq M, Haseeb MT, Tabassum T. Acute toxicity of a polysaccharide-based hydrogel from seeds of Ocimum basilicum. Cell Chem Technol. 2020;54(3–4):291–9.

    CAS 
    Article 

    Google Scholar
     

  • Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA. Polysaccharides in ocular drug supply. Pharmaceutics. 2020;12(1):22.

    CAS 
    Article 

    Google Scholar
     

  • Liu D, Lian Y, Fang Q, Liu L, Zhang J, Li J. Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an environment friendly ocular supply platform for moxifloxacin hydrochloride. Int J Biol Macromol. 2018;116:1026–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mittal N, Kaur G. Investigations on polymeric nanoparticles for ocular supply. Adv Polym Technol. 2019. https://doi.org/10.1155/2019/1316249.

    Article 

    Google Scholar
     

  • Chaharband F, Daftarian N, Kanavi MR, Varshochian R, Hajiramezanali M, Norouzi P, et al. Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA supply: formulation and in vivo efficacy analysis. Nanotechnol Biol Med. 2020;26: 102181.

    CAS 
    Article 

    Google Scholar
     

  • Qian Q, Niu S, Williams GR, Wu J, Zhang X, Zhu L-M. Peptide functionalized dual-responsive chitosan nanoparticles for managed drug supply to breast most cancers cells. Colloids Surf A Physicochem Eng Asp. 2019;564:122–30.

    CAS 
    Article 

    Google Scholar
     

  • Lu T-Y, Huang W-C, Chen Y, Baskaran N, Yu J, Wei Y. Impact of various hair protein fractions on the gel properties of keratin/chitosan hydrogels for the use in tissue engineering. Colloids Surf B. 2020;195: 111258.

    CAS 
    Article 

    Google Scholar
     

  • Silva B, Marto J, São Braz B, Delgado E, Almeida AJ, Gonçalves L. New nanoparticles for topical ocular supply of erythropoietin. Int J Pharm. 2020;576: 119020.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang D, So KF, Lo AC. Lycium barbarum polysaccharide extracts protect retinal perform and attenuate interior retinal neuronal injury in a mouse mannequin of transient retinal ischaemia. Clin Exp Ophthalmol. 2017;45(7):717–29.

    PubMed 
    Article 

    Google Scholar
     

  • Chien KJ, Horng CT, Huang YS, Hsieh YH, Wang CJ, Yang JS, et al. Results of Lycium barbarum (goji berry) on dry eye illness in rats. Mol Med Rep. 2018;17(1):809–18.

    CAS 
    PubMed 

    Google Scholar
     

  • Lakshmanan Y, Wong FSY, Zuo B, So Ok-F, Bui BV, Chan HHL. Posttreatment intervention with lycium barbarum polysaccharides is neuroprotective in a rat mannequin of continual ocular hypertension. Make investments Ophthalmol Vis Sci. 2019;60(14):4606–18.

    PubMed 
    Article 

    Google Scholar
     

  • Liu Y, Zhang Y. Lycium barbarum polysaccharides alleviate hydrogen peroxide-induced harm by up-regulation of miR-4295 in human trabecular meshwork cells. Exp Mol Pathol. 2019;106:109–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu L, Sha X-Y, Wu Y-N, Chen M-T, Zhong J-X. Lycium barbarum polysaccharides protects retinal ganglion cells towards oxidative stress harm. Neural Regen Res. 2020;15(8):1526.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buosi FS, Alaimo A, Di Santo MC, Elías F, Liñares GG, Acebedo SL, et al. Resveratrol encapsulation in excessive molecular weight chitosan-based nanogels for functions in ocular remedies: impression on human ARPE-19 tradition cells. Int J Biol Macromol. 2020;165:804–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Luo L-J, Nguyen DD, Lai J-Y. Dually useful hole ceria nanoparticle platform for intraocular drug supply: a push past the boundaries of static and dynamic ocular limitations towards glaucoma remedy. Biomaterials. 2020;243: 119961.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang P, Jacobs KM, Ohr MP, Swindle-Reilly KE. Chitosan-polycaprolactone core–shell microparticles for sustained supply of bevacizumab. Mol Pharm. 2020;17(7):2570–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zoratto N, Forcina L, Matassa R, Mosca L, Familiari G, Musarò A, et al. Hyaluronan-cholesterol nanogels for the enhancement of the ocular supply of therapeutics. Pharmaceutics. 2021;13(11):1781.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang S, Chi J, Jiang Z, Hu H, Yang C, Liu W, et al. A self-healing and injectable hydrogel primarily based on water-soluble chitosan and hyaluronic acid for vitreous substitute. Carbohydr Polym. 2021;256: 117519.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kicková E, Sadeghi A, Puranen J, Tavakoli S, Sen M, Ranta V-P, et al. Pharmacokinetics of pullulan-dexamethasone conjugates in retinal drug supply. Pharmaceutics. 2022;14(1):12.

    Article 
    CAS 

    Google Scholar
     

  • Sahle FF, Kim S, Niloy KK, Tahia F, Fili CV, Cooper E, et al. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev. 2019;148:290–307.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV, et al. Accelerating the interpretation of nanomaterials in biomedicine. ACS Nano. 2015;9(7):6644–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tang J, Qin N, Chong Y, Diao Y, Wang Z, Xue T, et al. Nanowire arrays restore imaginative and prescient in blind mice. Nat Commun. 2018;9(1):1–13.

    Article 
    CAS 

    Google Scholar
     

  • Liu XL, Chen S, Zhang H, Zhou J, Fan HM, Liang XJ. Magnetic nanomaterials for superior regenerative drugs: the promise and challenges. Adv Mater. 2019;31(45):1804922.

    CAS 
    Article 

    Google Scholar
     

  • Hao R, Xing R, Xu Z, Hou Y, Gao S, Solar S. Synthesis, functionalization, and biomedical functions of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao Y, Lim J, Teoh S-H, Xu C. Rising translational analysis on magnetic nanoparticles for regenerative drugs. Chem Soc Rev. 2015;44(17):6306–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharma R, Sharma D, Hazlett LD, Singh NK. Nano-biomaterials for retinal regeneration. Nanomaterials. 2021;11(8):1880.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Karamichos D. Ocular tissue engineering: present and future instructions. J Funct Biomater. 2015;6(1):77–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Masse F, Ouellette M, Lamoureux G, Boisselier E. Gold nanoparticles in ophthalmology. Med Res Rev. 2019;39(1):302–27.

    PubMed 
    Article 

    Google Scholar
     

  • Karakoçak BB, Raliya R, Davis JT, Chavalmane S, Wang W-N, Ravi N, et al. Biocompatibility of gold nanoparticles in retinal pigment epithelial cell line. Toxicol In Vitro. 2016;37:61–9.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Leow S, Luu CD, Hairul Nizam M, Mok P, Ruhaslizan R, Wong H, et al. Security and efficacy of human Wharton’s Jelly-derived mesenchymal stem cells remedy for retinal degeneration. PLoS ONE. 2015;10(6): e0128973.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang J-W, Yu Z-Y, Cheng S-J, Chung JH, Liu X, Wu C-Y, et al. Graphene oxide–primarily based nanomaterials: An perception into retinal prosthesis. Int J Mol Sci. 2020;21(8):2957.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tummala GK, Joffre T, Lopes VR, Liszka A, Buznyk O, Ferraz N, et al. Hyperelastic nanocellulose-reinforced hydrogel of excessive water content material for ophthalmic functions. ACS Biomater Sci Eng. 2016;2(11):2072–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Uzunalli G, Soran Z, Erkal TS, Dagdas YS, Dinc E, Hondur A, et al. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration. Acta Biomater. 2014;10(3):1156–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alarcon E, Vulesevic B, Argawal A, Ross A, Bejjani P, Podrebarac J, et al. Colored cornea replacements with anti-infective properties: increasing the secure use of silver nanoparticles in regenerative drugs. Nanoscale. 2016;8(12):6484–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim JI, Kim JY, Park CH. Fabrication of clear hemispherical 3D nanofibrous scaffolds with radially aligned patterns through a novel electrospinning technique. Sci Rep. 2018;8(1):1–13.


    Google Scholar
     

  • Salehi S, Czugala M, Stafiej P, Fathi M, Bahners T, Gutmann JS, et al. Poly (glycerol sebacate)-poly (ε-caprolactone) mix nanofibrous scaffold as intrinsic bio-and immunocompatible system for corneal restore. Acta Biomater. 2017;50:370–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu Z, Kong B, Liu R, Solar W, Mi S. Engineering of corneal tissue by way of an aligned PVA/collagen composite nanofibrous electrospun scaffold. Nanomaterials. 2018;8(2):124.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Nibourg LM, Gelens E, de Jong MR, Kuijer R, van Kooten TG, Koopmans SA. Nanofiber-based hydrogels with extracellular matrix-based artificial peptides for the prevention of capsular opacification. Exp Eye Res. 2016;143:60–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Momenzadeh D, Baradaran-Rafii A, Keshel SH, Ebrahimi M, Biazar E. Electrospun mat with eyelid fat-derived stem cells as a scaffold for ocular epithelial regeneration. Artif Cells Nanomed Biotechnol. 2017;45(1):120–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, et al. Medical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aat5580.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas BB, Zhu D, Zhang L, Thomas PB, Hu Y, Nazari H, et al. Survival and performance of hESC-derived retinal pigment epithelium cells cultured as a monolayer on polymer substrates transplanted in RCS rats. Investig Ophthalmol Vis Sci. 2016;57(6):2877–87.

    CAS 
    Article 

    Google Scholar
     

  • Kashani AH, Uang J, Mert M, Rahhal F, Chan C, Avery RL, et al. Surgical technique for implantation of a biosynthetic retinal pigment epithelium monolayer for geographic atrophy: expertise from a section 1/2a examine. Ophthalmol Retina. 2020;4(3):264–73.

    PubMed 
    Article 

    Google Scholar
     

  • Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for superior, dry age-related macular degeneration. Sci Transl Med. 2018;10(435):eaao4097.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Fernández-Pérez J, Kador KE, Lynch AP, Ahearne M. Characterization of extracellular matrix modified poly (ε-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration. Mater Sci Eng C. 2020;108: 110415.

    Article 
    CAS 

    Google Scholar
     

  • Tayebi T, Baradaran-Rafii A, Hajifathali A, Rahimpour A, Zali H, Shaabani A, et al. Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone clear membrane for corneal endothelial tissue engineering. Sci Rep. 2021;11(1):1–12.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y-C, Lin MTY, Ng AHC, Wong TT, Mehta JS. Nanotechnology for the therapy of allergic conjunctival ailments. Prescribed drugs. 2020;13(11):351.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhao X, Si J, Huang D, Li Ok, Xin Y, Sui M. Utility of star poly (ethylene glycol) derivatives in drug supply and managed launch. J Management Launch. 2020;323:565–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine-based options for ocular ailments. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(4): e1548.

    PubMed 
    Article 

    Google Scholar
     

  • Liu B, Kang C, Fang F. Biometric measurement of anterior section: a overview. Sensors. 2020;20(15):4285.

    PubMed Central 
    Article 

    Google Scholar
     

  • Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S, et al. Rising nano-formulations and nanomedicines functions for ocular drug supply. Nanomaterials. 2021;11(1):173.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shen H-H, Chan EC, Lee JH, Bee Y-S, Lin T-W, Dusting GJ, et al. Nanocarriers for therapy of ocular neovascularization behind the attention: New autos for ophthalmic drug supply. Nanomedicine. 2015;10(13):2093–107.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Besford QA, Cavalieri F, Caruso F. Glycogen as a constructing block for superior organic supplies. Adv Mater. 2020;32(18):1904625.

    CAS 
    Article 

    Google Scholar
     

  • Nguyen DD, Lai J-Y. Advancing the stimuli response of polymer-based drug supply techniques for ocular illness therapy. Polym Chem. 2020;11(44):6988–7008.

    CAS 
    Article 

    Google Scholar
     

  • Deshpande A, Mohamed M, Daftardar SB, Patel M, Boddu SH, Nesamony J. Stable lipid nanoparticles in drug supply: Alternatives and challenges. In: Rising nanotechnologies for diagnostics, drug supply and medical units, 2017, 291–330. https://doi.org/10.1016/B978-0-323-42978-8.00012-7

  • Dhanasekaran S, Chopra S. Getting a deal with on good drug supply techniques—a complete view of therapeutic concentrating on methods. Sensible Drug Supply System. 2016;1:31–62.


    Google Scholar
     

  • Mohanta BC, Dinda SC, Palei NN, Deb J. Stable lipid primarily based nano-particulate formulations in drug concentrating on. In: Position of novel drug supply autos in nanobiomedicine, 2019, 95. https://doi.org/10.5772/intechopen.88268

  • Poshina DN, Raik SV, Poshin AN, Skorik YA. Accessibility of chitin and chitosan in enzymatic hydrolysis: a overview. Polym Degrad Stab. 2018;156:269–78.

    CAS 
    Article 

    Google Scholar
     

  • Kritchenkov AS, Andranovitš S, Skorik YA. Chitosan and its derivatives: vectors in gene remedy. Russ Chem Rev. 2017;86(3):231.

    CAS 
    Article 

    Google Scholar
     

  • Berezin A, Lomkova E, Skorik YA. Chitosan conjugates with biologically energetic compounds: design methods, properties, and focused drug supply. Russ Chem Bull. 2012;61(4):781–95.

    CAS 
    Article 

    Google Scholar
     

  • Tiwari S, Bahadur P. Modified hyaluronic acid primarily based supplies for biomedical functions. Int J Biol Macromol. 2019;121:556–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fernando IS, Kim D, Nah J-W, Jeon Y-J. Advances in functionalizing fucoidans and alginates (bio) polymers by structural modifications: a overview. Chem Eng J. 2019;355:33–48.

    CAS 
    Article 

    Google Scholar
     

  • Pettignano A, Charlot A, Fleury E. Carboxyl-functionalized derivatives of carboxymethyl cellulose: in the direction of superior biomedical functions. Polym Rev. 2019;59(3):510–60.

    CAS 
    Article 

    Google Scholar
     

  • Siafaka PI, Titopoulou A, Koukaras EN, Kostoglou M, Koutris E, Karavas E, et al. Chitosan derivatives as efficient nanocarriers for ocular launch of timolol drug. Int J Pharm. 2015;495(1):249–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zambito Y, Di Colo G. Thiolated quaternary ammonium–chitosan conjugates for enhanced precorneal retention, transcorneal permeation and intraocular absorption of dexamethasone. Eur J Pharm Biopharm. 2010;75(2):194–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rassu G, Gavini E, Jonassen H, Zambito Y, Fogli S, Breschi MC, et al. New chitosan derivatives for the preparation of rokitamycin loaded microspheres designed for ocular or nasal administration. J Pharm Sci. 2009;98(12):4852–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hume LR, Lee HK, Benedetti L, Sanzgiri YD, Topp EM, Stella VJ. Ocular sustained supply of prednisolone utilizing hyaluronic acid benzyl ester movies. Int J Pharm. 1994;111(3):295–8.

    CAS 
    Article 

    Google Scholar
     

  • Bongiovì F, Di Prima G, Palumbo FS, Licciardi M, Pitarresi G, Giammona G. Hyaluronic acid-based micelles as ocular platform to modulate the loading, launch, and corneal permeation of corticosteroids. Macromol Biosci. 2017;17(12):1700261.

    Article 
    CAS 

    Google Scholar
     

  • De Campos AM, Diebold Y, Carvalho EL, Sánchez A, José AM. Chitosan nanoparticles as new ocular drug supply techniques: in vitro stability, in vivo destiny, and mobile toxicity. Pharm Res. 2004;21(5):803–10.

    PubMed 
    Article 

    Google Scholar
     

  • De Salamanca AE, Diebold Y, Calonge M, García-Vazquez C, Callejo S, Vila A, et al. Chitosan nanoparticles as a possible drug supply system for the ocular floor: toxicity, uptake mechanism and in vivo tolerance. Make investments Ophthalmol Vis Sci. 2006;47(4):1416–25.

    Article 

    Google Scholar
     

  • Prow TW, Bhutto I, Kim SY, Grebe R, Merges C, McLeod DS, et al. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomed Nanotechnol Biol Med. 2008;4(4):340.

    CAS 
    Article 

    Google Scholar
     

  • Lai J-Y, Ma DHK, Cheng H-Y, Solar C-C, Huang S-J, Li Y-T, et al. Ocular biocompatibility of carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet supply carriers. J Biomater Sci Polym Ed. 2010;21(3):359–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zorzi GK, Párraga JE, Seijo B, Sánchez A. Hybrid nanoparticle design primarily based on cationized gelatin and the polyanions dextran sulfate and chondroitin sulfate for ocular gene remedy. Macromol Biosci. 2011;11(7):905–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lai J-Y. Biocompatibility of genipin and glutaraldehyde cross-linked chitosan supplies within the anterior chamber of the attention. Int J Mol Sci. 2012;13(9):10970–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ogunjimi AT, Melo SM, Vargas-Rechia CG, Emery FS, Lopez RF. Hydrophilic polymeric nanoparticles ready from Delonix galactomannan with low cytotoxicity for ocular drug supply. Carbohydr Polym. 2017;157:1065–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Etienne O, Schneider A, Taddei C, Richert L, Schaaf P, Voegel J-C, et al. Degradability of polysaccharides multilayer movies within the oral atmosphere: an in vitro and in vivo examine. Biomacromol. 2005;6(2):726–33.

    CAS 
    Article 

    Google Scholar
     

  • Nguyen NTP, Nguyen LVH, Tran NMP, Nguyen DT, Nguyen TNT, Tran HA, et al. The impact of oxidation diploma and quantity ratio of elements on properties and functions of in situ cross-linking hydrogels primarily based on chitosan and hyaluronic acid. Mater Sci Eng C. 2019;103:109670.

    CAS 
    Article 

    Google Scholar
     

  • Sultana S, Alzahrani N, Alzahrani R, Alshamrani W, Aloufi W, Ali A, et al. Stability points and approaches to stabilised nanoparticles primarily based drug supply system. J Drug Goal. 2020;28(5):468–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu H, Wu W, Lin X, Feng Y. Polysaccharide-based nanomaterials for ocular drug supply: a perspective. Entrance Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.601246.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehra NK, Cai D, Kuo L, Hein T, Palakurthi S. Security and toxicity of nanomaterials for ocular drug supply functions. Nanotoxicology. 2016;10(7):836–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Almeida H, Lobão P, Frigerio C, Fonseca J, Silva R, Sousa Lobo JM, et al. Preparation, characterization and biocompatibility research of thermoresponsive eyedrops primarily based on the mix of nanostructured lipid carriers (NLC) and the polymer Pluronic F-127 for managed supply of ibuprofen. Pharm Dev Technol. 2017;22(3):336–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang R, Qian J, Li X, Yuan Y. Therapy of experimental autoimmune uveoretinitis with intravitreal injection of infliximab encapsulated in liposomes. Br J Ophthalmol. 2017;101(12):1731–8.

    PubMed 
    Article 

    Google Scholar
     

  • Tan G, Yu S, Pan H, Li J, Liu D, Yuan Ok, et al. Bioadhesive chitosan-loaded liposomes: a extra environment friendly and better permeable ocular supply platform for timolol maleate. Int J Biol Macromol. 2017;94:355–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Castro BFM, de Oliveira FG, Domingos LC, Cotta OAL, Silva-Cunha A, Fialho SL. Positively charged polymeric nanoparticles enhance ocular penetration of tacrolimus after topical administration. J Drug Deliv Sci Technol. 2020;60: 101912.

    CAS 
    Article 

    Google Scholar
     

  • Vaneev A, Tikhomirova V, Chesnokova N, Popova E, Beznos O, Kost O, et al. Nanotechnology for topical drug supply to the anterior section of the attention. Int J Mol Sci. 2021;22(22):12368.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Samimi M, Mahboobian M, Mohammadi M. Ocular toxicity evaluation of nanoemulsion in-situ gel formulation of fluconazole. Hum Exp Toxicol. 2021;40(12):2039–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mehra N, Aqil M, Sultana Y. A grafted copolymer-based nanomicelles for topical ocular supply of everolimus: formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability examine. Eur J Pharm Sci. 2021;159: 105735.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Bachu RD, Chowdhury P, Al-Saedi ZH, Karla PK, Boddu SH. Ocular drug supply limitations—function of nanocarriers within the therapy of anterior section ocular ailments. Pharmaceutics. 2018;10(1):28.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Eroglu YI. A comparative overview of Haute Autorité de Santé and Nationwide Institute for Well being and Care Excellence well being know-how assessments of Ikervis® to deal with extreme keratitis in grownup sufferers with dry eye illness which has not improved regardless of therapy with tear substitutes. J Mark Entry Well being Coverage. 2017;5(1):1336043.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reimondez-Troitiño S, Csaba N, Alonso M, De La Fuente M. Nanotherapies for the therapy of ocular ailments. Eur J Pharm Biopharm. 2015;95:279–93.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kalomiraki M, Thermos Ok, Chaniotakis NA. Dendrimers as tunable vectors of drug supply techniques and biomedical and ocular functions. Int J Nanomedicine. 2016;11:1.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pooja D, Kadari A, Kulhari H, Sistla R. Lipid-based nanomedicines: Present scientific standing and future views. In: Lipid nanocarriers for drug concentrating on. Lipid-based nanomedicines. Elsevier; 2018. p. 509–28. https://doi.org/10.1016/B978-0-12-813687-4.00013-X.

  • Palla S, Biswas J, Nagesha CK. Efficacy of Ozurdex implant in therapy of noninfectious intermediate uveitis. Indian J Ophthalmol. 2015;63(10):767.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fusi-Rubiano W, Blow RR, Lane M, Morjaria R, Denniston AK. Iluvien™(fluocinolone acetonide 0.19 mg intravitreal implant) within the therapy of diabetic macular edema: a overview. Ophthalmol Ther. 2018;7(2):293–305.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim HM, Woo SJ. Ocular drug supply to the retina: Present improvements and future views. Pharmaceutics. 2021;13(1):108.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee DJ. Intraocular implants for the therapy of autoimmune uveitis. J Funct Biomater. 2015;6(3):650–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grumezescu AM. Design of nanostructures for versatile therapeutic functions. Burlington: William Andrew; 2018.


    Google Scholar
     

  • Ghanchi F, Bourne R, Downes SM, Gale R, Rennie C, Tapply I, et al. An replace on long-acting therapies in continual sight-threatening eye ailments of the posterior section: AMD, DMO, RVO, uveitis and glaucoma. Eye. 2022;36(6):1154–67.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma P, Mumper RJ. Paclitaxel nano-delivery techniques: a complete overview. J Nanomed Nanotechnol. 2013;4(2):1000164.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yang M, Peterson WM, Yu Y, Kays J, Cardona D, Culp D, et al. GB-102 for moist AMD: a novel injectable formulation that safely delivers energetic ranges of sunitinib to the retina and RPE/choroid for over 4 months. Investig Ophthalmol Vis Sci. 2016;57(12):5037.


    Google Scholar
     

  • Gupta PK, Venkateswaran N. The function of KPI-121 0.25% within the therapy of dry eye illness: penetrating the mucus barrier to deal with periodic flares. Ther Adv Ophthalmol. 2021. https://doi.org/10.1177/25158414211012797.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong CW, Metselaar JM, Storm G, Wong TT. A overview of the scientific functions of drug supply techniques for the therapy of ocular anterior section irritation. Br J Ophthalmol. 2021;105(12):1617–22.

    PubMed 
    Article 

    Google Scholar
     

  • Bourlais C, Acar L, Zia HH, Sado PA, Needham T, Leverge R. Prog Retin Eye Res. 1998;17:33–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gulsen D, Chauhan A. Ophthalmic drug supply by way of contact lenses. Investig Ophthalmol Vis Sci. 2004;45(7):2342–7.

    Article 

    Google Scholar
     

  • Gaudana R, Jwala J, Boddu SH, Mitra AK. Latest views in ocular drug supply. Pharm Res. 2009;26(5):1197–216.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bochot A, Fattal E. Liposomes for intravitreal drug supply: a cutting-edge. J Management Launch. 2012;161(2):628–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee SJ, He W, Robinson SB, Robinson MR, Csaky KG, Kim H. Analysis of clearance mechanisms with transscleral drug supply. Make investments Ophthalmol Vis Sci. 2010;51(10):5205–12.

    PubMed 
    Article 

    Google Scholar
     

  • Patel A, Cholkar Ok, Agrahari V, Mitra AK. Ocular drug supply techniques: An outline. World J Pharmacol. 2013;2(2):47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang J, Jiao J, Niu M, Gao X, Zhang G, Yu H, et al. Ten years of data of nano-carrier primarily based drug supply techniques in ophthalmology: present proof, challenges, and future potential. Int J Nanomedicine. 2021;16:6497.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nagarwal RC, Kant S, Singh P, Maiti P, Pandit J. Polymeric nanoparticulate system: a possible method for ocular drug supply. J Management Launch. 2009;136(1):2–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharif NA. Therapeutic medicine and units for tackling ocular hypertension and glaucoma, and wish for neuroprotection and cytoprotective therapies. Entrance pharmacol. 2021. https://doi.org/10.3389/fphar.2021.729249.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Araújo J, Gonzalez E, Egea MA, Garcia ML, Souto EB. Nanomedicines for ocular NSAIDs: security on drug supply. Nanomed Nanotechnol Biol Med. 2009;5(4):394–401.

    Article 
    CAS 

    Google Scholar
     

  • Amrite AC, Kompella UB. Measurement-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57(12):1555–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheruvu NP, Amrite AC, Kompella UB. Impact of eye pigmentation on transscleral drug supply. Make investments Ophthalmol Vis Sci. 2008;49(1):333–41.

    PubMed 
    Article 

    Google Scholar
     

  • Vadlapudi A, CholKAr Ok, Dasari S, Mitra A. Ocular drug supply. Drug Deliv. 2015;1:219–63.


    Google Scholar
     

  • del Amo Páez EM. Ocular and systemic pharmacokinetic fashions for drug discovery and growth. Tutorial Dissertation 2015. Hansaprint Printing Home, Helsinki. ISBN 978-951-51-1425-9 (print)978-951-51-1426-6 (on-line).

  • Schoenwald RD. Ocular pharmacokinetics: Lippincott-Raven: Philadelphia. USA: PA; 1997.


    Google Scholar
     

  • Mishima S, Gasset A, Klyce S, Baum J. Willpower of tear quantity and tear move. Make investments Ophthalmol Vis Sci. 1966;5(3):264–76.

    CAS 

    Google Scholar
     

  • Marsh DA. Collection of drug supply approaches for the again of the attention: alternatives and unmet wants. In: Kompella UB, Edelhauser HF, editors. Drug product growth for the again of the attention. Boston: Springer; 2011. p. 1–20.


    Google Scholar
     

  • Wilson CG, Tan LE, Mains J. Ideas of retinal drug supply from throughout the vitreous. In: Kompella UB, Edelhauser HF, editors. Drug product growth for the again of the attention. Boston: Springer; 2011. p. 125–58.

    Chapter 

    Google Scholar
     

  • Radhakrishnan Ok, Sonali N, Moreno M, Nirmal J, Fernandez AA, Venkatraman S, et al. Protein supply to the again of the attention: limitations, carriers and stability of anti-VEGF proteins. Drug Discov At this time. 2017;22(2):416–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaji H, Nagai N, Nishizawa M, Abe T. Drug supply units for retinal ailments. Adv Drug Deliv Rev. 2018;128:148–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Agrahari V, Agrahari V, Mandal A, Pal D, Mitra AK. How are we bettering the supply to again of the attention? Advances and challenges of novel therapeutic approaches. Professional Opin Drug Deliv. 2017;14(10):1145–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug launch within the eye. Pharm Res. 2010;27(10):2043–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Masadeh R, Obaidat R, Alsmadi MT, Altaani B, Khanfar M, Alshyab R, et al. Technical Perception into Biodegradable Polymers Utilized in Implants. Jordan J Pharm Sci. 2018;11(3):133–60.


    Google Scholar
     

  • Tamboli V, Mishra GP, Mitra AK. Biodegradable polymers for ocular drug supply. Adv Ocul Drug Deliv. 2012;2012:65–86.


    Google Scholar
     

  • Kleiner LW, Wright JC, Wang Y. Evolution of implantable and insertable drug supply techniques. J Management Launch. 2014;181:1–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • García-Estrada P, García-Bon MA, López-Naranjo EJ, Basaldúa-Pérez DN, Santos A, Navarro-Partida J. Polymeric implants for the therapy of intraocular eye ailments: tendencies in biodegradable and non-biodegradable supplies. Pharmaceutics. 2021;13(5):701.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kompella UB, Edelhauser HF. Drug product growth for the again of the attention. Cham: Springer; 2011.

    Guide 

    Google Scholar
     

  • Kanski JJ, Bowling B. Medical ophthalmology: a scientific method. Elsevier Saunders; 2011. https://doi.org/10.1016/B978-0-7020-4093-1.00019-7

  • Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-Álvarez A, et al. Drug supply to the posterior section of the attention: Biopharmaceutic and pharmacokinetic issues. Pharmaceutics. 2020;12(3):269.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Smith S, Lorenz D, Peace J, McLeod Ok, Crockett R, Vogel R. Difluprednate ophthalmic emulsion 0.05%(Durezol®) administered two instances day by day for managing ocular irritation and ache following cataract surgical procedure. Clin Ophthalmol. 2010;4:983–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park CH, Kim MK, Kim EC, Kim JY, Kim T-I, Kim HK, et al. Efficacy of topical cyclosporine nanoemulsion 0.05% in contrast with topical cyclosporine emulsion 0.05% and diquafosol 3% in dry eye. Korean J Ophthalmol. 2019;33(4):343–52.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Leonardi A, Van Setten G, Amrane M, Ismail D, Garrigue J-S, Figueiredo FC, et al. Efficacy and security of 0.1% cyclosporine A cationic emulsion within the therapy of extreme dry eye illness: a multicenter randomized trial. J Ophthalmol. 2016;26(4):287–96.


    Google Scholar
     

  • Mandal A, Gote V, Pal D, Ogundele A, Mitra AK. Ocular pharmacokinetics of a topical ophthalmic nanomicellar resolution of cyclosporine (Cequa®) for dry eye illness. Pharm Res. 2019;36(2):1–21.

    CAS 
    Article 

    Google Scholar
     

  • Buggage RR, Amrane M, Ismail D, Deniaud M, Lemp MA, Baudouin C. The impact of cyclokat®(preservative-free cyclosporine 0.1% cationic emulsion) on dry eye illness indicators and signs in sjogren and non-sjogren sufferers with reasonable to extreme DED in a section III randomized scientific trial. Make investments Ophthalmol Vis Sci. 2012;53(14):576.


    Google Scholar
     

  • Бeздeткo П, Ильинa E. Эффeктивнocть лeчeния пaтoлoгии пepeднeй пoвepxнocти глaзнoгo яблoкa пpeпapaтaми Эдeнopм 5% и Лaкpиceк oфтa плюc. Oфтaльмoлoгия Bocтoчнaя Eвpoпa. 2017;7(3):403–9.


    Google Scholar
     

  • Garrigue J-S, Amrane M, Faure M-O, Holopainen JM, Tong L. Relevance of lipid-based merchandise within the administration of dry eye illness. J Ocul Pharmacol Ther. 2017;33(9):647–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bressler NM, Bressler SB. Photodynamic remedy with verteporfin (Visudyne): impression on ophthalmology and visible sciences. Investig Ophthalmol Vis Sci. 2000;41(3):624–8.

    CAS 

    Google Scholar
     

  • Tobin KA. Macugen therapy for moist age-related macular degeneration. Perception. 2006;31(1):11–4.

    PubMed 

    Google Scholar
     

  • Opitz DL, Harthan JS. Evaluation of azithromycin ophthalmic 1% resolution (AzaSite®) for the therapy of ocular infections. Ophthalmol Eye Dis. 2012. https://doi.org/10.4137/OED.S7791.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denis P, Baudouin C, Bron A, Nordmann J-P, Renard JP, Rouland JF, et al. First-line latanoprost remedy in ocular hypertension or open-angle glaucoma sufferers: a 3-month efficacy evaluation stratified by preliminary intraocular strain. BMC Ophthalmol. 2010;10(1):1–9.

    Article 
    CAS 

    Google Scholar
     

  • Benelli U. Systane® lubricant eye drops within the administration of ocular dryness. Clin Ophthalmol. 2011;5:783.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Navratil T, Garcia A, Verhoeven RS, Trevino L, Gilger BC, Mansberger SL, et al. Advancing ENV515 (travoprost) intracameral implant into scientific growth: nonclinical analysis of ENV515 in assist of first-time-in-human section 2a scientific examine. Make investments Ophthalmol Vis Sci. 2015;56(7):5706.


    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments