Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based mostly on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).
Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).
Wang, H. et al. Boson sampling with 20 enter photons and a 60-mode interferometer in a ten14-dimensional Hilbert house. Phys. Rev. Lett. 123, 250503 (2019).
Qiang, X. et al. Massive-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).
Strauf, S. et al. Excessive-frequency single-photon supply with polarization management. Nat. Photon. 1, 704–708 (2007).
Senellart, P., Solomon, G. & White, A. Excessive-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).
Liu, F. et al. Excessive Purcell issue technology of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018).
Uppu, R., Midolo, L., Zhou, X., Carolan, J. & Lodahl, P. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum expertise. Nat. Nanotechnol. 16, 1308–1317 (2021).
Tomm, N. et al. A vibrant and quick supply of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).
Reindl, M. et al. Phonon-assisted two-photon interference from distant quantum emitters. Nano Lett. 17, 4090–4095 (2017).
Weber, J. H. et al. Two-photon interference within the telecom C-band after frequency conversion of photons from distant quantum emitters. Nat. Nanotechnol. 14, 23–26 (2018).
Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020).
He, Y.-M. et al. On-demand semiconductor single-photon supply with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).
Basset, F. B. et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 7, eabe6379 (2021).
Grim, J. Q. et al. Scalable in operando pressure tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18, 963–969 (2019).
Kołodyński, J. et al. Gadget-independent quantum key distribution with single-photon sources. Quantum 4, 260 (2020).
Patel, R. B. et al. Two-photon interference of the emission from electrically tunable distant quantum dots. Nat. Photon. 4, 632–635 (2010).
He, Y. et al. Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots. Phys. Rev. Lett. 111, 237403 (2013).
Giesz, V. et al. Cavity-enhanced two-photon interference utilizing distant quantum dot sources. Phys. Rev. B 92, 161302 (2015).
Zopf, M. et al. Frequency suggestions for two-photon interference from separate quantum dots. Phys. Rev. B 98, 161302 (2018).
You, X. et al. Quantum interference between unbiased solid-state single-photon sources separated by 300 km fiber. Preprint at https://arxiv.org/abs/2106.15545 (2021).
Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 4745 (2020).
Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon machine. Nature 419, 594–597 (2002).
Wang, H. et al. Close to-transform-limited single photons from an environment friendly solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).
Thoma, A. et al. Exploring dephasing of a solid-state quantum emitter by way of time- and temperature-dependent Hong-Ou-Mandel experiments. Phys. Rev. Lett. 116, 033601 (2016).
Kuhlmann, A. V. et al. Cost noise and spin noise in a semiconductor quantum machine. Nat. Phys. 9, 570–575 (2013).
Schöll, E. et al. Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability. Nano Lett. 19, 2404–2410 (2019).
Maunz, P. et al. Quantum interference of photon pairs from two distant trapped atomic ions. Nat. Phys. 3, 538–541 (2007).
Stephenson, L. J. et al. Excessive-rate, high-fidelity entanglement of qubits throughout an elementary quantum community. Phys. Rev. Lett. 124, 110501 (2020).
Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).
Stockill, R. et al. Part-tuned entangled state technology between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017).
Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).
Humphreys, P. C. et al. Deterministic supply of distant entanglement on a quantum community. Nature 558, 268–273 (2018).
Kambs, B. & Becher, C. Limitations on the indistinguishability of photons from distant stable state sources. New J. Phys. 20, 115003 (2018).
Kiesel, N., Schmid, C., Weber, U., Ursin, R. & Weinfurter, H. Linear optics controlled-phase gate made easy. Phys. Rev. Lett. 95, 210505 (2005).
James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).
Istrati, D. et al. Sequential technology of linear cluster states from a single photon emitter. Nat. Commun. 11, 5501 (2020).
Cogan, D., Su, Z.-E., Kenneth, O. & Gershoni, D. A deterministic supply of indistinguishable photons in a cluster state. Preprint at https://arxiv.org/abs/2110.05908 (2021).
Wolters, J. et al. Easy atomic quantum reminiscence appropriate for semiconductor quantum dot single photons. Phys. Rev. Lett. 119, 060502 (2017).
Nguyen, G. et al. Affect of molecular beam effusion cell high quality on optical and electrical properties of quantum dots and quantum wells. J. Cryst. Development 550, 125884 (2020).
Gurioli, M., Wang, Z., Rastelli, A., Kuroda, T. & Sanguinetti, S. Droplet epitaxy of semiconductor nanostructures for quantum photonic units. Nat. Mater. 18, 799–810 (2019).
Heyn, C. et al. Extremely uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl. Phys. Lett. 94, 183113 (2009).
Mooney, P. Deep donor ranges (DX facilities) in III-V semiconductors. J. Appl. Phys. 67, R1–R26 (1990).
Warburton, R. J. Single spins in self-assembled quantum dots. Nat. Mater. 12, 483 (2013).
Kuhlmann, A. V. et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots working in a set-and-forget mode. Rev. Sci. Instrum. 84, 073905 (2013).
Löbl, M. C. et al. Correlations between optical properties and Voronoi-cell space of quantum dots. Phys. Rev. B 100, 155402 (2019).
Keil, R. et al. Stable-state ensemble of extremely entangled photon sources at rubidium atomic transitions. Nat. Commun. 8, 15501 (2017).
Zhai, L. et al. Massive-range frequency tuning of a narrow-linewidth quantum emitter. Appl. Phys. Lett. 117, 083106 (2020).
Fischer, Ok. A. et al. Signatures of two-photon pulses from a quantum two-level system. Nat. Phys. 13, 649–654 (2017).
Altepeter, J., Jeffrey, E. & Kwiat, P. Photonic state tomography. Adv. At. Mol. Choose. Phys. 52, 105–159 (2005).
White, A. G. et al. Measuring two-qubit gates. J. Choose. Soc. Am. B 24, 172–183 (2007).