Saturday, August 20, 2022
HomeNanotechnologyQuantum interference of similar photons from distant GaAs quantum dots

Quantum interference of similar photons from distant GaAs quantum dots


  • Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based mostly on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article 

    Google Scholar
     

  • Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).

    Article 

    Google Scholar
     

  • Wang, H. et al. Boson sampling with 20 enter photons and a 60-mode interferometer in a ten14-dimensional Hilbert house. Phys. Rev. Lett. 123, 250503 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Qiang, X. et al. Massive-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Strauf, S. et al. Excessive-frequency single-photon supply with polarization management. Nat. Photon. 1, 704–708 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Senellart, P., Solomon, G. & White, A. Excessive-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Liu, F. et al. Excessive Purcell issue technology of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Uppu, R., Midolo, L., Zhou, X., Carolan, J. & Lodahl, P. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum expertise. Nat. Nanotechnol. 16, 1308–1317 (2021).

  • Tomm, N. et al. A vibrant and quick supply of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Reindl, M. et al. Phonon-assisted two-photon interference from distant quantum emitters. Nano Lett. 17, 4090–4095 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Weber, J. H. et al. Two-photon interference within the telecom C-band after frequency conversion of photons from distant quantum emitters. Nat. Nanotechnol. 14, 23–26 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020).

    CAS 
    Article 

    Google Scholar
     

  • He, Y.-M. et al. On-demand semiconductor single-photon supply with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Basset, F. B. et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 7, eabe6379 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Grim, J. Q. et al. Scalable in operando pressure tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18, 963–969 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kołodyński, J. et al. Gadget-independent quantum key distribution with single-photon sources. Quantum 4, 260 (2020).

    Article 

    Google Scholar
     

  • Patel, R. B. et al. Two-photon interference of the emission from electrically tunable distant quantum dots. Nat. Photon. 4, 632–635 (2010).

    CAS 
    Article 

    Google Scholar
     

  • He, Y. et al. Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots. Phys. Rev. Lett. 111, 237403 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Giesz, V. et al. Cavity-enhanced two-photon interference utilizing distant quantum dot sources. Phys. Rev. B 92, 161302 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zopf, M. et al. Frequency suggestions for two-photon interference from separate quantum dots. Phys. Rev. B 98, 161302 (2018).

    CAS 
    Article 

    Google Scholar
     

  • You, X. et al. Quantum interference between unbiased solid-state single-photon sources separated by 300 km fiber. Preprint at https://arxiv.org/abs/2106.15545 (2021).

  • Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 4745 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon machine. Nature 419, 594–597 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Wang, H. et al. Close to-transform-limited single photons from an environment friendly solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Thoma, A. et al. Exploring dephasing of a solid-state quantum emitter by way of time- and temperature-dependent Hong-Ou-Mandel experiments. Phys. Rev. Lett. 116, 033601 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Kuhlmann, A. V. et al. Cost noise and spin noise in a semiconductor quantum machine. Nat. Phys. 9, 570–575 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Schöll, E. et al. Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability. Nano Lett. 19, 2404–2410 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Maunz, P. et al. Quantum interference of photon pairs from two distant trapped atomic ions. Nat. Phys. 3, 538–541 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Stephenson, L. J. et al. Excessive-rate, high-fidelity entanglement of qubits throughout an elementary quantum community. Phys. Rev. Lett. 124, 110501 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Stockill, R. et al. Part-tuned entangled state technology between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Humphreys, P. C. et al. Deterministic supply of distant entanglement on a quantum community. Nature 558, 268–273 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kambs, B. & Becher, C. Limitations on the indistinguishability of photons from distant stable state sources. New J. Phys. 20, 115003 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kiesel, N., Schmid, C., Weber, U., Ursin, R. & Weinfurter, H. Linear optics controlled-phase gate made easy. Phys. Rev. Lett. 95, 210505 (2005).

    Article 
    CAS 

    Google Scholar
     

  • James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Istrati, D. et al. Sequential technology of linear cluster states from a single photon emitter. Nat. Commun. 11, 5501 (2020).

  • Cogan, D., Su, Z.-E., Kenneth, O. & Gershoni, D. A deterministic supply of indistinguishable photons in a cluster state. Preprint at https://arxiv.org/abs/2110.05908 (2021).

  • Wolters, J. et al. Easy atomic quantum reminiscence appropriate for semiconductor quantum dot single photons. Phys. Rev. Lett. 119, 060502 (2017).

    Article 

    Google Scholar
     

  • Nguyen, G. et al. Affect of molecular beam effusion cell high quality on optical and electrical properties of quantum dots and quantum wells. J. Cryst. Development 550, 125884 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Gurioli, M., Wang, Z., Rastelli, A., Kuroda, T. & Sanguinetti, S. Droplet epitaxy of semiconductor nanostructures for quantum photonic units. Nat. Mater. 18, 799–810 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Heyn, C. et al. Extremely uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl. Phys. Lett. 94, 183113 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Mooney, P. Deep donor ranges (DX facilities) in III-V semiconductors. J. Appl. Phys. 67, R1–R26 (1990).

    CAS 
    Article 

    Google Scholar
     

  • Warburton, R. J. Single spins in self-assembled quantum dots. Nat. Mater. 12, 483 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Kuhlmann, A. V. et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots working in a set-and-forget mode. Rev. Sci. Instrum. 84, 073905 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Löbl, M. C. et al. Correlations between optical properties and Voronoi-cell space of quantum dots. Phys. Rev. B 100, 155402 (2019).

    Article 

    Google Scholar
     

  • Keil, R. et al. Stable-state ensemble of extremely entangled photon sources at rubidium atomic transitions. Nat. Commun. 8, 15501 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Zhai, L. et al. Massive-range frequency tuning of a narrow-linewidth quantum emitter. Appl. Phys. Lett. 117, 083106 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Fischer, Ok. A. et al. Signatures of two-photon pulses from a quantum two-level system. Nat. Phys. 13, 649–654 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Altepeter, J., Jeffrey, E. & Kwiat, P. Photonic state tomography. Adv. At. Mol. Choose. Phys. 52, 105–159 (2005).

  • White, A. G. et al. Measuring two-qubit gates. J. Choose. Soc. Am. B 24, 172–183 (2007).


    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments