Thursday, July 7, 2022
HomeNanotechnologySHED-derived exosomes promote LPS-induced wound therapeutic with much less itching by stimulating...

SHED-derived exosomes promote LPS-induced wound therapeutic with much less itching by stimulating macrophage autophagy | Journal of Nanobiotechnology


  • Veith AP, Henderson Okay, Spencer A, Sligar AD, Baker AB. Therapeutic methods for enhancing angiogenesis in wound therapeutic. Adv Drug Deliv Rev. 2019;146:97–125.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An Y, Lin S, Tan X, Zhu S, Nie F, Zhen Y, Gu L, Zhang C, Wang B, Wei W, et al. Exosomes from adipose-derived stem cells and software to pores and skin wound therapeutic. Cell Prolif. 2021;54: e12993.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chung BY, Kim HB, Jung MJ, Kang SY, Kwak IS, Park CW, Kim HO. Put up-burn pruritus. Int J Mol Sci. 2020;21:3880.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu J, Zanvit P, Hu L, Tseng PY, Liu N, Wang F, Liu O, Zhang D, Jin W, Guo N, et al. The cytokine TGF-β induces interleukin-31 expression from dermal dendritic cells to activate sensory neurons and stimulate wound itching. Immunity. 2020;53:371-383.e375.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Powers JG, Higham C, Broussard Okay, Phillips TJ. Wound therapeutic and treating wounds: continual wound care and administration. J Am Acad Dermatol. 2016;74:607–25 (quiz 625–606).

    PubMed 
    Article 

    Google Scholar
     

  • Wynn TA, Vannella KM. Macrophages in tissue restore, regeneration, and fibrosis. Immunity. 2016;44:450–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou X, Brown BA, Siegel AP, El Masry MS, Zeng X, Music W, Das A, Khandelwal P, Clark A, Singh Okay, et al. Exosome-mediated crosstalk between keratinocytes and macrophages in cutaneous wound therapeutic. ACS Nano. 2020;14:12732–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-mediated irritation in regular and diabetic wound therapeutic. J Immunol. 2017;199:17–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ganesh GV, Ramkumar KM. Macrophage mediation in regular and diabetic wound therapeutic responses. Inflamm Res. 2020;69:347–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gurevich DB, Severn CE, Twomey C, Greenhough A, Money J, Toye AM, Mellor H, Martin P. Reside imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 2018;37: e97786.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol. 2013;14:986–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H, Guo CJ, Chen S, Trier AM, Xu AZ, Tripathi SV, et al. Sensory neurons co-opt classical immune signaling pathways to mediate continual itch. Cell. 2017;171:217-228.e213.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li P, Gong Z, Shultz LD, Ren G. Mesenchymal stem cells: from regeneration to most cancers. Pharmacol Ther. 2019;200:42–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee DE, Ayoub N, Agrawal DK. Mesenchymal stem cells and cutaneous wound therapeutic: novel strategies to extend cell supply and therapeutic efficacy. Stem Cell Res Ther. 2016;7:37.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Casado-Díaz A, Quesada-Gómez JM, Dorado G. Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medication: purposes in pores and skin wound therapeutic. Entrance Bioeng Biotechnol. 2020;8:146.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stanko P, Altanerova U, Jakubechova J, Repiska V, Altaner C. Dental mesenchymal stem/stromal cells and their exosomes. Stem Cells Int. 2018;2018:8973613.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal stromal cell secretome: influencing therapeutic potential by mobile pre-conditioning. Entrance Immunol. 2018;9:2837.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kumar P, Kandoi S, Misra R, Vijayalakshmi S, Rajagopal Okay, Verma RS. The mesenchymal stem cell secretome: a brand new paradigm in direction of cell-free therapeutic mode in regenerative medication. Cytokine Development Issue Rev. 2019;46:1–9.

    Article 
    CAS 

    Google Scholar
     

  • Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, Jung JY, Choi H, Lee JH, Sung S, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and pores and skin regeneration. Cells. 2020;9:1157.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu P, Zhang B, Shi H, Qian H, Xu W. MSC-exosome: a novel cell-free remedy for cutaneous regeneration. Cytotherapy. 2018;20:291–301.

    PubMed 
    Article 

    Google Scholar
     

  • Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: towards cell-free therapeutic purposes. Mol Ther. 2015;23:812–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brennan M, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble components for tissue regeneration. Adv Funct Mater. 2020;30:1909125.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous tooth. Proc Natl Acad Sci USA. 2003;100:5807–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sharpe PT. Dental mesenchymal stem cells. Growth. 2016;143:2273–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. Minimal info for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the worldwide society for extracellular vesicles and replace of the MISEV2014 pointers. J Extracell Vesicles. 2018;7:1535750.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maroto R, Zhao Y, Jamaluddin M, Popov VL, Wang H, Kalubowilage M, Zhang Y, Luisi J, Solar H, Culbertson CT, et al. Results of storage temperature on airway exosome integrity for diagnostic and practical analyses. J Extracell Vesicles. 2017;6:1359478–1359478.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liu H, Tian Y, Xue C, Niu Q, Chen C, Yan X. Evaluation of extracellular vesicle DNA on the single-vesicle stage by nano-flow cytometry. J Extracell Vesicles. 2022;11: e12206.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Music D, Wei C, Chen C, Yang Y, Deng X, Gu J. Telocytes inhibited inflammatory issue expression and enhanced cell migration in LPS-induced pores and skin wound therapeutic fashions in vitro and in vivo. J Transl Med. 2020;18:60.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Crompton R, Williams H, Ansell D, Campbell L, Holden Okay, Cruickshank S, Hardman MJ. Oestrogen promotes therapeutic in a bacterial LPS mannequin of delayed cutaneous wound restore. Lab Make investments. 2016;96:439–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng X, Takayama Y, Ohno N, Kanda H, Dai Y, Sokabe T, Tominaga M. Elevated TRPV4 expression in non-myelinating Schwann cells is related to demyelination after sciatic nerve damage. Commun Biol. 2020;3:716.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dutta B, Arya RK, Goswami R, Alharbi MO, Sharma S, Rahaman SO. Position of macrophage TRPV4 in irritation. Lab Make investments. 2020;100:178–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical cord-derived mesenchymal stem cell-derived exosomes mixed pluronic F127 hydrogel promote continual diabetic wound therapeutic and full pores and skin regeneration. Int J Nanomed. 2020;15:5911–26.

    CAS 
    Article 

    Google Scholar
     

  • Matsuzawa-Ishimoto Y, Hwang S, Cadwell Okay. Autophagy and irritation. Annu Rev Immunol. 2018;36:73–101.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mouton AJ, Li X, Corridor ME, Corridor JE. Weight problems, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and irritation. Circ Res. 2020;126:789–806.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deo P, Chow SH, Han ML, Speir M, Huang C, Schittenhelm RB, Dhital S, Emery J, Li J, Kile BT, et al. Mitochondrial dysfunction attributable to outer membrane vesicles from Gram-negative micro organism prompts intrinsic apoptosis and irritation. Nat Microbiol. 2020;5:1418–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cao Z, Xie Y, Yu L, Li Y, Wang Y. Hepatocyte progress issue (HGF) and stem cell issue (SCF) maintained the stemness of human bone marrow mesenchymal stem cells (hBMSCs) throughout long-term enlargement by preserving mitochondrial operate by way of the PI3K/AKT, ERK1/2, and STAT3 signaling pathways. Stem Cell Res Ther. 2020;11:329–329.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Luo P, Jiang C, Ji P, Wang M, Xu J. Exosomes of stem cells from human exfoliated deciduous tooth as an anti-inflammatory agent in temporomandibular joint chondrocytes by way of miR-100-5p/mTOR. Stem Cell Res Ther. 2019;10:216.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage phenotypes regulate scar formation and continual wound therapeutic. Int J Mol Sci. 2017;18:1545.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cevikbas F, Lerner EA. Physiology and pathophysiology of itch. Physiol Rev. 2020;100:945–82.

    PubMed 
    Article 

    Google Scholar
     

  • Singer AJ, Clark RA. Cutaneous wound therapeutic. N Engl J Med. 1999;341:738–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kou X, Xu X, Chen C, Sanmillan ML, Cai T, Zhou Y, Giraudo C, Le A, Shi S. The Fas/Fap-1/Cav-1 advanced regulates IL-1RA secretion in mesenchymal stem cells to speed up wound therapeutic. Sci Transl Med. 2018;10: eaai8524.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ryu B, Baek J, Kim H, Lee JH, Kim J, Jeong YH, Lee SG, Kang KR, Oh MS, Kim EY, et al. Anti-inflammatory results of M-MSCs in DNCB-induced atopic dermatitis mice. Biomedicines. 2020;8:439.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • He X, Dong Z, Cao Y, Wang H, Liu S, Liao L, Jin Y, Yuan L, Li B. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound therapeutic. Stem Cells Int. 2019;2019:7132708.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Yu M, Xie D, Wang L, Ye C, Zhu Q, Liu F, Yang L. Melatonin-stimulated MSC-derived exosomes enhance diabetic wound therapeutic by regulating macrophage M1 and M2 polarization by focusing on the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11:259.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liu Okay, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, Tanaka KE, Czaja MJ. Impaired macrophage autophagy will increase the immune response in overweight mice by selling proinflammatory macrophage polarization. Autophagy. 2015;11:271–84.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Xiao Q, Che X, Cai B, Tao Z, Zhang H, Shao Q, Pu J. Macrophage autophagy regulates mitochondria-mediated apoptosis and inhibits necrotic core formation in weak plaques. J Cell Mol Med. 2020;24:260–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtell Okay, Zhang B, Yue Z. Microglia clear neuron-released α-synuclein by way of selective autophagy and forestall neurodegeneration. Nat Commun. 2020;11:1386.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Plaza-Zabala A, Sierra-Torre V, Sierra A. Autophagy and microglia: novel companions in neurodegeneration and getting old. Int J Mol Sci. 2017;18:598.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chen P, Cescon M, Bonaldo P. Autophagy-mediated regulation of macrophages and its purposes for most cancers. Autophagy. 2014;10:192–200.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Toh WS, Zhang B, Lai RC, Lim SK. Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy. 2018;20:1419–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, Watanabe Y, Hayashi C, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs improve M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021;122:306–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ceccariglia S, Cargnoni A, Silini AR, Parolini O. Autophagy: a possible key contributor to the therapeutic motion of mesenchymal stem cells. Autophagy. 2020;16:28–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gilardini Montani MS, Santarelli R, Granato M, Gonnella R, Torrisi MR, Faggioni A, Cirone M. EBV reduces autophagy, intracellular ROS and mitochondria to impair monocyte survival and differentiation. Autophagy. 2019;15:652–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR, et al. NF-κB restricts inflammasome activation by way of elimination of broken mitochondria. Cell. 2016;164:896–910.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shan M, Qin J, Jin F, Han X, Guan H, Li X, Zhang J, Zhang H, Wang Y. Autophagy suppresses isoprenaline-induced M2 macrophage polarization by way of the ROS/ERK and mTOR signaling pathway. Free Radic Biol Med. 2017;110:432–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu T, Wang L, Liang P, Wang X, Liu Y, Cai J, She Y, Wang D, Wang Z, Guo Z, et al. USP19 suppresses irritation and promotes M2-like macrophage polarization by manipulating NLRP3 operate by way of autophagy. Cell Mol Immunol. 2020;2020:2431–42.


    Google Scholar
     

  • Li Okay, Deng Y, Deng G, Chen P, Wang Y, Wu H, Ji Z, Yao Z, Zhang X, Yu B, Zhang Okay. Excessive ldl cholesterol induces apoptosis and autophagy by the ROS-activated AKT/FOXO1 pathway in tendon-derived stem cells. Stem Cell Res Ther. 2020;11:131.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang H, Ge S, He Okay, Zhao X, Wu Y, Shao Y, Wu X. FoxO1 inhibits autophagosome-lysosome fusion resulting in endothelial autophagic-apoptosis in diabetes. Cardiovasc Res. 2019;115:2008–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu F, Qiu H, Xue M, Zhang S, Zhang X, Xu J, Chen J, Yang Y, Xie J. MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization by way of the Akt/FoxO1 pathway. Stem Cell Res Ther. 2019;10:345.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Xu X, Zhi T, Chao H, Jiang Okay, Liu Y, Bao Z, Fan L, Wang D, Li Z, Liu N, Ji J. ERK1/2/mTOR/Stat3 pathway-mediated autophagy alleviates traumatic mind injury-induced acute lung damage. Biochim Biophys Acta Mol Foundation Dis. 2018;1864:1663–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han JH, Park HS, Lee DH, Jo JH, Heo KS, Myung CS. Regulation of autophagy by controlling Erk1/2 and mTOR for platelet-derived progress factor-BB-mediated vascular easy muscle cell phenotype shift. Life Sci. 2021;267: 118978.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • You L, Wang Z, Li H, Shou J, Jing Z, Xie J, Sui X, Pan H, Han W. The function of STAT3 in autophagy. Autophagy. 2015;11:729–39.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jia J, Abudu YP, Claude-Taupin A, Gu Y, Kumar S, Choi SW, Peters R, Mudd MH, Allers L, Salemi M, et al. Galectins management MTOR and AMPK in response to lysosomal harm to induce autophagy. Autophagy. 2019;15:169–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell tradition supernatants and organic fluids. Curr Protoc Cell Biol. 2006;3:3–22.


    Google Scholar
     

  • Ou Q, Zhang S, Fu C, Yu L, Xin P, Gu Z, Cao Z, Wu J, Wang Y. Extra pure extra higher: triple pure anti-oxidant puerarin/ferulic acid/polydopamine included hydrogel for wound therapeutic. J Nanobiotechnol. 2021;19:237.

    CAS 
    Article 

    Google Scholar
     

  • Akhter N, Wilson A, Thomas R, Al-Rashed F, Kochumon S, Al-Roub A, Arefanian H, Al-Madhoun A, Al-Mulla F, Ahmad R, Sindhu S. ROS/TNF-α crosstalk triggers the expression of IL-8 and MCP-1 in human monocytic THP-1 cells by way of the NF-κB and ERK1/2 mediated signaling. Int J Mol Sci. 2021;22:10519.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments